FUNCTIONAL ZONATION OF ADRENOCORTICAL TISSUE IN THE BRUSH POSSUM (TRICHOSURUS VULPECULA)

1971 ◽  
Vol 49 (1) ◽  
pp. 131-NP ◽  
Author(s):  
G. P. VINSON ◽  
J. G. PHILLIPSt ◽  
I. CHESTER JONES ◽  
W. N. TSANG

SUMMARY The relationship of structure and function in the adrenal gland of the possum Trichosurus vulpecula, has been studied using in-vitro incubation techniques. It was shown that both 17α-hydroxycorticosteroids and 17-deoxycorticosteroids were produced from radioactive pregnenolone and progesterone, and that these transformations occurred both in the definitive cortex as well as in a special zone of hypertrophied tissue found only in the adult female. In support of earlier findings, it was also shown that the adrenal cortex of the possum has a remarkable capacity to produce C19 steroids (including androstenedione and testosterone) from the radioactive precursors. While most of the transformations occurred with equal efficiency in both types of tissue, the reduction of androstenedione to testosterone seemed to take place more readily in the special hypertrophied zone of the adult female. In studies in vivo, it was found that levels of testosterone in the peripheral blood of the adult female possum were extremely high compared with man. Variations in testosterone levels were not apparently correlated with the stage of the oestrous cycle. The possible pathways by which the adrenal products are synthesized, and their physiological implications are discussed.

2010 ◽  
Vol 298 (2) ◽  
pp. G248-G254 ◽  
Author(s):  
Bradley L. Urquhart ◽  
Jamie C. Gregor ◽  
Nilesh Chande ◽  
Michael J. Knauer ◽  
Rommel G. Tirona ◽  
...  

Folic acid is a vitamin essential for thymidylate and purine synthesis. The human proton-coupled folate transporter (hPCFT) has recently been identified as a pH-dependent folic acid transporter, and mutations in this transporter have been linked to hereditary folic acid malabsorption. In this study, we assessed hPCFT-mediated transport activity in vitro, intersubject variability of intestinal expression in relation to blood folates, and the relationship of proton-pump inhibitor (PPI) therapy on hPCFT expression in vivo. We created a Madin-Darby canine kidney strain II (MDCKII) cell line stably expressing hPCFT to evaluate its drug substrates and inhibitors. Intestinal pinch biopsies (duodenum, ileum, colon) were collected from patients undergoing routine endoscopy procedures, and expressed levels of hPCFT were determined by RT-PCR. When assessed using MDCKII-hPCFT cells, folic acid and methotrexate were found to be high-affinity hPCFT substrates. Sulfasalazine and pyrimethamine were noted to inhibit hPCFT activity with Ki values of 42.3 and 161.7 μmol/l, respectively. hPCFT was localized to the brush-border membrane of enterocytes with highest expression in the duodenum and reduced levels in the ileum and colon. When we assessed hPCFT expression in a subset of patients who were receiving PPI therapy, a near 50% reduction in duodenal hPCFT mRNA expression was noted. These results suggest that hPCFT transporter activity can be modulated by many drugs in clinical use, and expression of this transporter in the gastrointestinal tract is higher in the duodenum than more distal sites (duodenum > ileum > colon). Importantly, we note that PPI drug use appears to be associated with reduced hPCFT expression in vivo.


1977 ◽  
Vol 43 (5) ◽  
pp. 839-843 ◽  
Author(s):  
J. A. Severson ◽  
R. D. Fell ◽  
J. G. Tuig ◽  
D. R. Griffith

Plasma corticosterone concentrations and in vitro adrenal secretion of corticosterone were determined in exercise-trained rats. Rats, 100, 200, and 300 days of age, were trained for a 10-wk period by treadmill running. Following the training program, rats were subjected to an acute bout of swimming. Acute swimming elevated plasma corticosterone concentrations in all age groups. At 170 days of age, the plasma corticosterone concentration following swimming was higher in exercise-trained rats than in controls. The opposite was true of acutely swum rats at 270 and 370 days of age. Acute swimming elevated the in vitro adrenal gland response to adrenocorticotropic hormone stimulation in control rats at all ages and in trained rats at 170 days of age. The in vivo relationship of epinephrine and the pituitary adrenal system is suggested as a mechanism which could have caused this response. The relationship of secretion rates to plasma corticosterone concentrations indicated that extra-adrenal mechanisms, such as decreased turnover, were also responsible for the elevated plasma corticosterone levels observed in response to acute swimming.


Open Heart ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. e000831 ◽  
Author(s):  
Melissa Suzanne Burroughs Peña ◽  
Katrina Swett ◽  
Robert C Kaplan ◽  
Krista Perreira ◽  
Martha Daviglus ◽  
...  

ObjectiveTo describe the relationship of household secondhand smoke (SHS) exposure and cardiac structure and function.MethodsParticipants (n=1069; 68 % female; age 45–74 years) without history of tobacco use, coronary artery disease or severe valvular disease were included. Past childhood (starting at age <13 years), adolescent/adult and current exposure to household SHS was assessed. Survey linear regression analyses were used to model the relationship of SHS exposure and echocardiographic measures of cardiac structure and function, adjusting for covariates (age, sex, study site, alcohol use, physical activity and education).ResultsSHS exposure in childhood only was associated with reduced E/A velocity ratio (β=−0.06 (SE 0.02), p=0.008). SHS exposure in adolescence/adult only was associated with increased left ventricular ejection fraction (LVEF) (1.2 (0.6), p=0.04), left atrial volume index (1.7 (0.8), p=0.04) and decreased isovolumic relaxation time (−0.003 (0.002), p=0.03). SHS exposure in childhood and adolescence/adult was associated with worse left ventricular global longitudinal strain (LVGLS) (two-chamber) (0.8 (0.4), p= 0.049). Compared with individuals who do not live with a tobacco smoker, individuals who currently live with at least one tobacco smoker had reduced LVEF (−1.4 (0.6), p=0.02), LVGLS (average) (0.9 (0.40), p=0.03), medial E′ velocity (−0.5 (0.2), p=0.01), E/A ratio (−0.09 (0.03), p=0.003) and right ventricular fractional area change (−0.02 (0.01), p=0.01) with increased isovolumic relaxation time (0.006 (0.003), p=0.04).ConclusionsPast and current household exposure to SHS was associated with abnormalities in cardiac systolic and diastolic function. Reducing household SHS exposure may be an opportunity for cardiac dysfunction prevention to reduce the risk of future clinical heart failure.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


2020 ◽  
Vol 34 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Guosong Xin ◽  
Miao Yu ◽  
Yang Hu ◽  
Shiyong Gao ◽  
Zheng Qi ◽  
...  

2005 ◽  
Vol 33 (11) ◽  
pp. 1729-1739 ◽  
Author(s):  
Donglu Zhang ◽  
Theodore J. Chando ◽  
Donald W. Everett ◽  
Christopher J. Patten ◽  
Shangara S. Dehal ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3302
Author(s):  
Małgorzata Zimowska ◽  
Karolina Archacka ◽  
Edyta Brzoska ◽  
Joanna Bem ◽  
Areta M. Czerwinska ◽  
...  

Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.


2017 ◽  
Vol 44 (3) ◽  
pp. 907-919 ◽  
Author(s):  
Qiang Liu ◽  
Deyi Luo ◽  
Tongxin Yang ◽  
Banghua Liao ◽  
Hong Li ◽  
...  

Background/Aims: Overactive bladder associated with bladder outlet obstruction (BOO) is a highly prevalent condition, which is usually treated with antimuscarinics. However, the potential effects of antimuscarinics on the structure and function of bladder have not been investigated thus far. Methods: Sprague-Dawley(R) rats accepted bladder neck obstruction surgery or sham surgery, and then received treatment of three different antimuscarinics (Solifenacin, Darifenacin, and Tolterodine) or vehicle. After 3, 6 and 12 weeks, the bladder function and structure were measured. The effect of antimuscarinics on cellular alteration in vitro was observed under mechanical stimulation. Bladder morphology were examined by immunohistochemistry, and the bladder function were investigated by cystometry and strip contractility test. The expression of muscarinic receptors and inflammatory cytokines were measured by PCR and Western blotting. Results: Here we demonstrate, both in vitro and in vivo, that antimuscarinics are protective regulators for the bladder structure and function. Antimuscarinics decrease the weight of bladders with BOO. Antimuscarinics improve the voiding parameter and enhance the contraction of bladder smooth muscle. The results also show that antimuscarinics inhibit the proliferation of bladder smooth muscle cells both in vivo and in vitro, it can reduce the collagen deposition and inflammatory cytokines in bladders with BOO. During this process, the expression of M2 and M3 receptors was altered by antimuscarinics. Conclusion: Antimuscarinics could reverse the structural and functional changes of BOO bladder wall at cellular and tissue level, and the alteration of M2 and M3 receptors may be involved in this biological process.


Sign in / Sign up

Export Citation Format

Share Document