Prostaglandin F2α- and phorbol 12-myristate-13-acetate-stimulated progesterone production by cultured human luteal cells in the mid-luteal phase: prostaglandin F2α increases cytosolic Ca2+ and inositol phosphates

1992 ◽  
Vol 133 (3) ◽  
pp. 451-458 ◽  
Author(s):  
T. Endo ◽  
H. Watanabe ◽  
H. Yamamoto ◽  
S. Tanaka ◽  
M. Hashimoto

ABSTRACT While prostaglandin F2α (PGF2α) has been thought to be a natural luteolysin in non-primates, a luteolytic effect in the human corpus luteum is less evident. We therefore investigated the action of PGF2α on monolayer cultures of human luteal cells obtained from mid-luteal phase corpora lutea. PGF2α increased basal and human chorionic gonadotrophin (hCG)-stimulated progesterone production by human cultured luteal cells. A potent tumour-promoting phorbol ester, phorbol 12-myristate-13-acetate (PMA), also stimulated progesterone production by cultured human luteal cells. Although human luteal cells were incubated for 24 h with PMA, hCG was still able to stimulate the production of progesterone by PMA-pretreated cells. However, PMA pretreatment blocked the ability of PGF2α to stimulate progesterone production. It is possible that the luteotrophic effect of PGF2α may be mediated, in part, by the activation of protein kinase C. Addition of PGF2α to suspensions of human luteal cells preincubated with myo-[2-3H]inositol promoted an increase in labelled inositol phosphates. PGF2α also rapidly increased intracellular free Ca2+ in human luteal cells loaded with the fluorescent Ca2+ probe, fura-2. We conclude that PGF2α and PMA stimulate progesterone production and that PGF2α increases the intracellular free calcium and inositol phosphates of human cultured luteal cells in the mid-luteal phase. Journal of Endocrinology (1992) 133, 451–458

1980 ◽  
Vol 87 (2) ◽  
pp. 247-254 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Progesterone production was assessed following short-term incubations of luteal cell suspensions prepared from tissue samples of human corpora lutea obtained at specific times throughout the luteal phase of the menstrual cycle. Luteal cells responded rapidly and sensitively to human chorionic gonadotrophin (HCG; concentration required for 50% maximum response, 0·1–1·0 i.u./ml) with a maximum level of response (five- to tenfold higher than basal production) similar to that elicited by human LH or N6,02-dibutyryl cyclic AMP. In the absence of gonadotrophin or in the presence of sub-maximal (but not maximal) concentrations of HCG, progesterone production by mid-luteal phase cells was stimulated by prostaglandin F2α (1 μmol/l), an effect not observed during the late-luteal phase. l-Adrenaline and l-isoprenaline failed to elicit significant increases in the level of progesterone production.


1977 ◽  
Vol 73 (1) ◽  
pp. 115-122 ◽  
Author(s):  
I. A. SWANSTON ◽  
K. P. McNATTY ◽  
D. T. BAIRD

SUMMARY The concentration of prostaglandin F2α (PGF2α), progesterone, pregnenolone, oestradiol-17β, oestrone, androstenedione and testosterone was measured in corpora lutea obtained from 40 women at various stages of the menstrual cycle. The concentration of PGF2α was significantly higher in corpora lutea immediately after ovulation (26·7 ± 3·9 (s.e.m.) ng/g, P < 0·005) and in corpora albicantia (16·3 ± 3·3 ng/g, P < 0·005) than at any other time during the luteal phase. There was no correlation between the concentration of PGF2α and that of any steroid. The progesterone concentration was highest in corpora lutea just after ovulation (24·9 ± 6·7 μg/g) and in early luteal groups (25·7 ± 6·8 μg/g) but declined significantly (P < 0·05) to its lowest level in corpora albicantia (1·82 ± 0·66 μg/g). The concentration of oestradiol-17β in the corpus luteum and luteal weight were significantly greater during the mid-luteal phase than at any other stage (concentration 282 ± 43 ng/g, P < 0·05; weight 1·86 ± 0·18 g, P < 0·005). The results indicate that regression of the human corpus luteum is not caused by a rise in the ovarian concentration of PGF2α in the late luteal phase of the cycle.


1985 ◽  
Vol 104 (1) ◽  
pp. 149-151 ◽  
Author(s):  
M. C. Richardson ◽  
G. M. Masson

ABSTRACT Suspensions of luteal cells were prepared from samples of human corpora lutea obtained during the luteal phase of menstrual cycles. Addition of oxytocin (1 μmol/l) to the various cell preparations had no effect on either basal production of progesterone or on steroidogenic responses to a range of concentrations of gonadotrophin. J. Endocr. (1985) 104, 149–151


1982 ◽  
Vol 95 (1) ◽  
pp. 65-70 ◽  
Author(s):  
G. J. S. Tan ◽  
R. Tweedale ◽  
J. S. G. Biggs

The effects of oxytocin on dispersed luteal cells from human corpora lutea of the menstrual cycle were studied. Oxytocin at a concentration of 4 mi.u./ml produced a slight increase in basal progesterone production. However, higher oxytocin concentrations (400 and 800 mi.u./ml) markedly inhibited both basal and human chorionic gonadotrophin-induced progesterone production. These data provide evidence for an effect of oxytocin on the human corpus luteum. In view of the inhibitory action of oxytocin, increased secretion of this hormone may be important in the demise of the corpus luteum at the end of the menstrual cycle.


1993 ◽  
Vol 138 (2) ◽  
pp. 291-298 ◽  
Author(s):  
A. E. Michael ◽  
D. R. E. Abayasekara ◽  
G. E. Webley

ABSTRACT Progesterone production by dispersed luteal cells obtained from the marmoset monkey on day 14 after ovulation can be stimulated by both prostaglandin F2α (PGF2α) and its structural analogue, cloprostenol. To establish whether these responses can be attributed to cross-reaction with the prostaglandin E2 (PGE2) receptor, this study compared the involvement of cyclic adenosine-3′,5′-monophosphate (cAMP) and protein kinase C (PKC) in the luteotrophic responses to PGE2, PGF2α and cloprostenol. While all three prostaglandins stimulated similar increases in progesterone production (239·5 ± 7·9% of control; P <0·01), only PGE2 stimulated a significant increase in cAMP accumulation (373·2 ± 28·4% of control; P <0·01). This study is the first to demonstrate PKC activity in the marmoset ovary. Following down-regulation of PKC with a tumour-promoting phorbol ester, 4β-phorbol 12-myristate 13-acetate (4β-PMA), basal progesterone production was significantly increased (150·9 ± 8·2% of control; P <0·05) and the luteotrophic effects of PGF2α and cloprostenol were no longer evident, whereas the response to PGE2 was unaffected. These observations are consistent with the differential involvement of cAMP and PKC in the luteotrophic responses to PGE2 and PGF2α/cloprostenol respectively. Hence, we conclude that the luteotrophic actions of prostaglandins E2 and F2α on dispersed marmoset luteal cells are mediated via different receptors and signal transduction pathways. Journal of Endocrinology (1993) 138, 291–298


1998 ◽  
Vol 159 (2) ◽  
pp. 201-209 ◽  
Author(s):  
RE Ciereszko ◽  
BK Petroff ◽  
AC Ottobre ◽  
Z Guan ◽  
BT Stokes ◽  
...  

Previously, we reported that administration of prolactin (PRL) during the early luteal phase in sows increases plasma progesterone concentrations. In the current study, we searched for the mechanisms by which PRL exerts this luteotrophic effect. The objectives of the study were (1) to examine the effect of PRL and/or low-density lipoproteins (LDL) on progesterone production by porcine luteal cells derived from early corpora lutea, and (2) to assess the ability of PRL to activate phosphoinositide-specific phospholipase C (PI-PLC) and protein kinase C (PKC) in these luteal cells. Ovaries with early corpora lutea (day 1-2 of the oestrous cycle) were obtained from the slaughterhouse. Progesterone production by dispersed luteal cells was measured after treatment with PRL, phorbol 12-myristate 13-acetate or inhibitors of PKC in the presence or absence of LDL. LDL increased progesterone concentration in the incubation medium (304.5 vs 178.6 ng/ml in control, P<0.05). PRL augmented LDL-stimulated progesterone secretion by luteal cells (to 416 ng/ml, P<0.05), but PRL alone did not affect progesterone production (209.6 ng/ml, P>0.05). Staurosporine, a PKC inhibitor, inhibited progesterone secretion stimulated by the combined action of LDL and PRL; however, such inhibition was not demonstrated when cells were treated with the PKC inhibitor, H-7. PKC activation was assessed by measuring the specific association of [H]phorbol dibutyrate (H-PDBu) with luteal cells after treatment with PRL or ionomycin (a positive control). PRL and ionomycin increased H-PDBu-specific binding in early luteal cells by 28+/-5.5% (within 5 min) and 70.2+/-19.3% (within 2 min) over control binding respectively (P<0.05). In addition, PRL did not augment the LDL-stimulated progesterone production in PKC-deficient cells. In contrast with PKC, total inositol phosphate accumulation, as well as intracellular free calcium concentrations, were not affected by PRL in the current study. We conclude that PRL, in the presence of LDL, stimulates progesterone production by early corpora lutea in vitro. Moreover, PRL appears to activate PKC, but not PI-PLC, in these cells. Thus intracellular transduction of the PRL signal may involve activation of PKC that is not dependent on PI-PLC.


1984 ◽  
Vol 103 (1) ◽  
pp. 107-110 ◽  
Author(s):  
M. G. Hunter

ABSTRACT Human luteal tissue recovered from varying stages of the luteal phase was minced and incubated for 3 h and the effect of human chorionic gonadotrophin (hCG), prolactin and hCG + prolactin on progesterone and oestradiol production measured. While hCG generally enhanced both progesterone and oestradiol synthesis, prolactin alone at either 20 or 200 μg/l had no significant effect on steroidogenesis. When prolactin was added along with hCG in four of six corpora lutea, however, progesterone production significantly increased and in three of six corpora lutea oestradiol production was increased above that induced by hCG alone. It is concluded that prolactin may play some role in the control of steroidogenesis by the human corpus luteum. J. Endocr. (1984) 103, 107–110


Reproduction ◽  
2015 ◽  
Vol 149 (5) ◽  
pp. 453-464 ◽  
Author(s):  
Soon Ok Kim ◽  
Nune Markosyan ◽  
Gerald J Pepe ◽  
Diane M Duffy

Prostaglandin F2α (PGF2α) has been proposed as a functional luteolysin in primates. However, administration of PGF2α or prostaglandin synthesis inhibitors in vivo both initiate luteolysis. These contradictory findings may reflect changes in PGF2α receptors (PTGFRs) or responsiveness to PGF2α at a critical point during the life span of the corpus luteum. The current study addressed this question using ovarian cells and tissues from female cynomolgus monkeys and luteinizing granulosa cells from healthy women undergoing follicle aspiration. PTGFRs were present in the cytoplasm of monkey granulosa cells, while PTGFRs were localized in the perinuclear region of large, granulosa-derived monkey luteal cells by mid-late luteal phase. A PTGFR agonist decreased progesterone production in luteal cells obtained at mid-late and late luteal phases, but did not decrease progesterone production by granulosa cells or luteal cells from younger corpora lutea. These findings are consistent with a role for perinuclear PTGFRs in functional luteolysis. This concept was explored using human luteinizing granulosa cells maintained in vitro as a model for luteal cell differentiation. In these cells, PTGFRs relocated from the cytoplasm to the perinuclear area in an estrogen- and estrogen receptor-dependent manner. Similar to our findings with monkey luteal cells, human luteinizing granulosa cells with perinuclear PTGFRs responded to a PTGFR agonist with decreased progesterone production. These data support the concept that PTGFR stimulation promotes functional luteolysis only when PTGFRs are located in the perinuclear region. Estrogen receptor-mediated relocation of PTGFRs within luteal cells may be a necessary step in the initiation of luteolysis in primates.


1977 ◽  
Vol 73 (1) ◽  
pp. 71-78 ◽  
Author(s):  
K. M. HENDERSON ◽  
K. P. McNATTY

SUMMARY The newly formed corpus luteum of many species is refractory to the lytic action of prostaglandin F2α (PGF2α). This phenomenon was studied utilizing porcine, bovine and human granulosa-luteal cells in tissue culture. The steroidogenic potential of the granulosa-luteal cells was critical in determining whether PGF2α could inhibit progesterone production. Since the steroidogenic potential of the granulosa-luteal cell is related to the amount of LH bound to the cell, the bound LH may protect the granulosa-luteal cells from the lytic action of PGF2α. Finally, a 'see-saw' type of interaction between LH and PGF2α is postulated to account for the resistance of the newly formed corpus luteum to PGF2α


1993 ◽  
Vol 120 (1) ◽  
pp. 103-106 ◽  
Author(s):  
E. R. Mutiga ◽  
E. Mukasa-Mugerwa ◽  
T. Azage

SUMMARYThe luteolytic effect of prostaglandin F2α (PGF2α) during the confirmed luteal phase of the oestrous cycle was evaluated in ten Boran and ten Boran × Friesian cross-bred heifers. Following injection with 25 mg Lutalyse, animals were bled every 6 h for 96 h and plasma progesterone (P4) determined by the ELISA technique. Borans had significantly (P < 0·05) smaller corpora lutea (12·01±0·72 ν. 17·03±2·10 mm) and responded faster to PGF2α injection (65·57±1·40 ν. 78·27±2·18 h) than the cross-bred heifers. However, there was no significant difference in either the initial P4 values (6.24±0·98 ν. 8·00±1·71 ng/ml) or the rate of its decline following PGF2α injection between the two breeds. Values declined sharply to basal levels (11% of the initial pretreatment values) within 48 h in both breeds. All ten cross-breds and eight Borans showed standing oestrus within a week of treatment. However, oestrus was better synchronized (P < 0·05) in Borans than cross-breds. It was concluded that PGF2α is effective for oestrus synchronization in both breeds, but oestrus occurred earlier and was more precise in Borans than in cross-breds.


Sign in / Sign up

Export Citation Format

Share Document