STEROIDOGENESIS BY CULTURED GRANULOSA CELLS ASPIRATED FROM HUMAN FOLLICLES USING PREGNENOLONE AND ANDROGENS AS PRECURSORS

1978 ◽  
Vol 77 (2) ◽  
pp. 171-183 ◽  
Author(s):  
R. E. FOWLER ◽  
N. L. FOX ◽  
R. G. EDWARDS ◽  
D. E. WALTERS ◽  
P. C. STEPTOE

SUMMARY Human granulosa cells from Graafian follicles aspirated 3–4 h before the expected time of ovulation were incubated with various steroid substrates, including pregnenolone, androstenedione, testosterone and dehydroepiandrosterone (DHA). Steroid production after 3 and 10 h of incubation was determined by radioimmunoassay. Progesterone and 17α-hydroxyprogesterone were the major products of granulosa cells in control short-term cultures with endogenous substrates. The addition of pregnenolone increased the synthesis of progesterone and 17α-hydroxyprogesterone compared with the controls, although the response varied considerably between paired short-term cultures. Little or no oestradiol-17β was produced from endogenous precursors or short-term cultures to which pregnenolone had been added; one follicle, however, produced similar amounts of oestradiol-17β in the control cultures and after incubation with pregnenolone. When granulosa cells were cultured with various amounts of androstenedione, DHA or testosterone, large amounts of oestradiol-17β were produced, especially in short-term cultures in which larger amounts of substrate were added. Progesterone production continued and progesterone was synthesized more rapidly or in greater amounts in some short-term test cultures than in the controls. The results indicate that human granulosa cells are one source of oestradiol-17β during the preovulatory phase. The data support the two-cell theory for oestradiol synthesis, for granulosa cells do not appear to undertake steroid conversion via the 5-unsaturated pathway, but aromatize androgens known to be produced by thecal cells. It is also suggested that either androgens or oestradiol-17β stimulate progesterone production by granulosa cells, at least in vitro.

2002 ◽  
Vol 87 (7) ◽  
pp. 3441-3451 ◽  
Author(s):  
Ravid Sasson ◽  
Abraham Amsterdam

Human granulosa cells obtained from in vitro fertilization patients are highly luteinized, but can still be stimulated by LH/cAMP for production of progesterone. This stimulation involved enhancement of apoptosis. Incubation of the cells with dexamethasone (Dex) reduced the apoptotic incidence compared with nontreated cells and completely abolished the increase in apoptosis stimulated by LH or forskolin, concomitantly with a pronounced increase in progesterone production. Organization of the actin cytoskeleton was dramatically reduced after LH/forskolin stimulation. In contrast, Dex prevented disorganization of the actin filament networks. LH and forskolin also decreased the organization of gap junctions, which could be prevented by Dex. However, the intracellular level of connexin 43 was elevated in the presence of LH, forskolin, and Dex. Endogenous levels of the survival gene protein Bcl-2 were significantly elevated in all cultures treated with Dex compared with either nonstimulated cultures or cultures stimulated with LH and forskolin. Our data suggest that LH/cAMP can stimulate steroidogenesis even during the initial stage of apoptosis of human granulosa cells, whereas Dex, which blocks apoptosis, could further elevate progesterone production. Moreover, the integrity of gap junctions and the actin cytoskeleton as well as elevated levels of Bcl-2 may play an important role in the suppression of apoptosis of human granulosa cells.


1976 ◽  
Vol 71 (2) ◽  
pp. 259-263 ◽  
Author(s):  
K. M. HENDERSON

SUMMARY 16-Aryloxy analogues of prostaglandin F2α(PGF2α) are potent luteolysins in laboratory and farm animals. When their effect on progesterone production by luteinized human granulosa cells in tissue culture was investigated inhibition of both basal and gonadotrophin-stimulated progesterone production was observed, so revealing characteristics expected of potential human luteolysins. The analogues were, however, unable to inhibit progesterone production stimulated by PGE2, suggesting that like PGF2α these compounds may act by specifically blocking LH-activated adenylate cyclase. The 16-aryloxyprostaglandins similarly inhibited progesterone production by porcine granulosa cells, so that the effects observed with the 16-aryloxyprostaglandins in vitro may be indicative of their potential in vivo.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Rut Bryl ◽  
Katarzyna Stefańska ◽  
Błażej Chermuła ◽  
Bogumiła Stelmach ◽  
Wojciech Pieńkowski ◽  
...  

Abstract Granulosa cells play an important role in follicle development, maturation, and atresia. They are a cellular source of the two most important ovarian steroids, namely, estradiol and progesterone and are also crucial for bidirectional communication with the oocyte, thus being involved in the regulation of its growth, development and function. Growing body of evidence suggests that granulosa cells cultured in vitro display stemness and transdifferentiation potential. Together with the fact that they can be easily collected during IVF procedures, these properties of GCs may be of particular interest for both regenerative medicine and transplantology. Establishment of in vitro cell culture and its thorough characterization, including molecular, is crucial for future potential utilization of human granulosa cells in design of engineered tissue grafts or cell-based therapies, in particular targeted at female infertility. Nevertheless, the transcriptomic alterations which may occur during in vitro culture of granulosa cells are still largely uncharacterized. The aim of this study was to examine expression changes of three genes encoding histone demethylases which serve as transcription coactivators in short term in vitro cell culture of human granulosa cells. The study groups consisted of 14 patients, aged 18–40 years undergoing in vitro fertilization (IVF). Expression level assessment was performed after 24 h, 48 h, 72 h, 96 h, 120 h, 144 h and 168 h of in vitro primary cell culture utilizing RT-qPCR technique. Upregulation of PHF2 expression in all time points of the culture was observed, whereas the tendency of JHDM1D and PHF8 was mainly to decrease in expression level. Further study on a larger population would be required in order to confirm the presented tendencies. Running title: Expression pattern of selected histone demethylases in human granulosa cells


2020 ◽  
Vol 8 (4) ◽  
pp. 190-195
Author(s):  
Sandra Kałużna ◽  
Rut Bryl ◽  
Błażej Chermuła ◽  
Rafał Sibiak ◽  
Katarzyna Stefańska ◽  
...  

AbstractThe essential function of granulosa cells is to maintain the proper course of oogenesis and folliculogenesis.The immune system is an additional local regulator of ovarian function, with cytokines necessary for the proper function of the ovaries, including the secretion of steroid hormonesThis study aimed to analyze the expression of genes in human GCs in short-term primary culture and define the difference in the expression of IL1β, IL6, and TNFα genes at 48h and 72h of culture compared to the 24h control. Total RNA was isolated using the Chomczyński and Sacchi protocol. RNA samples were treated with DNase I and reverse transcribed (RT) into cDNA. The determination of transcript levels of the mentioned genes was performed using the Light Cycler® 96 Real-Time PCR kit, Roche Diagnostics GmbH (Mannheim, Germany).The present study proved that granulosa cells in a short-term primary in vitro culture express IL-1β, IL-6, and TNFα. The tested genes show a decrease in expression at 24h of culture and a subsequent slight increase at 72h, not exceeding the initial levels. The expression changes the most for IL1β and the least for TNFα.The fluctuations in the amount of transcript may be influenced by factors stored in granulosa cells before the IVM procedure, the procedure of in vitro fertilization, as well as factors related to the process of primary culture. More research is needed to understand the details of these occurrences.Running title: The inflammatory response in human granulosa cells


1989 ◽  
Vol 120 (3_Suppl) ◽  
pp. S183-S185
Author(s):  
H. MUELLER ◽  
T. RABE ◽  
B. HAUFF ◽  
L. KIESEL ◽  
B. RUNNEBAUM

2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


Author(s):  
Sarah Beschta ◽  
Katja Eubler ◽  
Nancy Bohne ◽  
Ignasi Forne ◽  
Dieter Berg ◽  
...  

AbstractHuman primary granulosa cells (GCs) derived from women undergoing oocyte retrieval can be cultured and used as a cellular model for the study of human ovarian function. In vitro, they change rapidly, initially resembling cells of the preovulatory follicle and then cells of the corpus luteum. They are derived from individual patients, whose different medical history, lifestyle and age lead to heterogeneity. Thus, cells can rarely be ideally matched for cellular experiments or, if available, only in small quantities. We reasoned that cryopreservation of human GCs may be helpful to improve this situation. Previous studies indicated the feasibility of such an approach, but low survival of human GCs was reported, and effects on human GC functionality were only partially evaluated. We tested a slow freezing protocol (employing FCS and DMSO) for human GCs upon isolation from follicular fluid. We compared cryopreserved and subsequently thawed cells with fresh, non-cryopreserved cells from the same patients. About 80% of human GCs survived freezing/thawing. No differences were found in cell morphology, survival rate in culture, or transcript levels of mitochondrial (COX4, OPA1, TOMM20), steroidogenic (CYP11A1, CYP19A1) or cell–cell contact genes (GJA1) between the two groups in cells cultured for 1–5 days. A proteomic analysis revealed no statistically significant change in the abundance of a total of 5962 proteins. The two groups produced comparable basal levels of progesterone and responded similarly to hCG with elevation of progesterone. Taken together, our results show this to be a rapid and readily available method for the cryopreservation of human GCs. We anticipate that it will allow future large-scale experiments and may thereby improve cellular studies with human ovarian cells.


Contraception ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Michael Dimattina ◽  
Barry Albertson ◽  
David E. Seyler ◽  
D.Lynn Loriaux ◽  
Richard J. Falk

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sylwia Ciesiółka ◽  
Joanna Budna ◽  
Karol Jopek ◽  
Artur Bryja ◽  
Wiesława Kranc ◽  
...  

The key mechanisms responsible for achievement of full reproductive and developmental capability in mammals are the differentiation and transformation of granulosa cells (GCs) during folliculogenesis, oogenesis, and oocyte maturation. Although the role of 17 beta-estradiol (E2) in ovarian activity is widely known, its effect on proliferative capacity, gap junction connection (GJC) formation, and GCs-luteal cells transformation requires further research. Therefore, the goal of this study was to assess the real-time proliferative activity of porcine GCs in vitro in relation to connexin (Cx), luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), and aromatase (CYP19A1) expression during short-term (168 h) primary culture. The cultured GCs were exposed to acute (at 96 h of culture) and/or prolonged (between 0 and 168 h of culture) administration of 1.8 and 3.6 μM E2. The relative abundance of Cx36, Cx37, Cx40, Cx43, LHR, FSHR, and CYP19A1 mRNA was measured. We conclude that the proliferation capability of GCs in vitro is substantially associated with expression of Cxs, LHR, FSHR, and CYP19A1. Furthermore, the GC-luteal cell transformation in vitro may be significantly accompanied by the proliferative activity of GCs in pigs.


Sign in / Sign up

Export Citation Format

Share Document