Effects of bovine follicular fluid on gonadotrophin secretion in intact and chronically ovariectomized ewes before and after desensitization of pituitary gonadotrophs to gonadotrophin-releasing hormone

1988 ◽  
Vol 117 (3) ◽  
pp. 431-439 ◽  
Author(s):  
P. G. Knight ◽  
R. J. Castillo

ABSTRACT Intact and chronically ovariectomized ewes were treated for 4 days with charcoal-treated bovine follicular fluid (FF) or charcoal-treated bovine serum during the late-anoestrous period, and the effects on basal and gonadotrophin-releasing hormone (GnRH)-induced secretion of LH and FSH observed. Subsequently, ewes received s.c. implants containing a sustained-release formulation of a potent GnRH agonist d-Ser(But)6-Azgly10-LHRH (ICI 118630) to desensitize pituitary gonadotrophs to hypothalamic stimulation, and the effects of bovine FF and bovine serum were re-assessed 2 weeks later. Chronic exposure (for 2–3 weeks) to ICI 118630 significantly reduced basal levels of LH and FSH in both intact and ovariectomized ewes and completely abolished both spontaneous LH pulses as well as exogenous GnRH-induced acute increases in plasma LH and FSH levels. Treatment with bovine FF significantly reduced plasma FSH levels, but not LH levels, in both intact and ovariectomized ewes before and after chronic exposure to ICI 118630. In intact ewes before exposure to ICI 118630, treatment with bovine FF actually enhanced pulsatile LH secretion and raised mean plasma LH levels by 240% (P <0·05). No such stimulatory effect of bovine FF on LH secretion was observed in intact ewes exposed to ICI 118630 or in ovariectomized ewes before or after exposure to ICI 118630, suggesting that the effect probably involved an alteration in ovarian steroid feedback affecting hypothalamic GnRH output. Treatment with bovine FF did not significantly affect the magnitude of GnRH-induced surges of LH or of FSH observed in either intact or ovariectomized ewes before exposure to ICI 118630. These observations indicate that charcoal-treated bovine FF, a rich source of inhibin, can directly suppress pituitary FSH secretion in vivo, irrespective of whether a functionally intact hypothalamo-pituitary-ovarian axis is present. J. Endocr. (1988) 117, 431–439

1992 ◽  
Vol 8 (2) ◽  
pp. 109-118 ◽  
Author(s):  
J. Brooks ◽  
W. J. Crow ◽  
J. R. McNeilly ◽  
A. S. McNeilly

ABSTRACT The modulation of FSH secretion at the beginning and middle of the follicular phase of the cycle represents the key event in the growth and selection of the preovulatory follicle. However, the mechanisms that operate within the pituitary gland to control the increased release of FSH and its subsequent inhibition in vivo remain unclear. Treatment of ewes with bovine follicular fluid (bFF) during the luteal phase has been previously shown to suppress the plasma concentrations of FSH and, following cessation of treatment on day 11, a rebound release of FSH occurs on days 12 and 13. When luteal regression is induced on day 12, this hypersecretion of FSH results in an increase in follicle growth and ovulation rate. To investigate the mechanisms involved in the control of FSH secretion, ewes were treated with twice daily s.c. injections of 5 ml bFF on days 3–11 of the oestrous cycle and luteal regression was induced on day 12 with prostaglandin (PG). The treated ewes and their controls were then killed on day 11 (luteal), or 16 or 32h after PG and their pituitaries removed and halved. One half was analysed for gonadotrophin and gonadotrophin-releasing hormone (GnRH) receptor content. Total pituitary RNA was extracted from the other half and subjected to Northern analysis using probes for FSH-β, LH-β and common α subunit. Frequent blood samples were taken and assayed for gonadotrophins. FSH secretion was significantly (P<0.01) reduced during bFF treatment throughout the luteal phase and then significantly (P<0.01) increased after cessation of treatment, with maximum secretion being reached 18– 22h after PG, and then declining towards control values by 32h after PG. A similar pattern of LH secretion was seen after bFF treatment. Pituitary FSH content was significantly (P<0.05) reduced by bFF treatment at all stages of the cycle. No difference in the pituitary LH content was seen. The increase in GnRH receptor content after PG in the controls was delayed in the treated animals. Analysis of pituitary mRNA levels revealed that bFF treatment significantly (P<0.01) reduced FSH-β mRNA levels in the luteal phase. Increased levels of FSH-β, LH-β and α subunit mRNA were seen 16h after PG in the bFF-treated animals, at the time when FSH and LH secretion from the pituitary was near maximum. These results suggest that the rebound release of FSH after treatment with bFF (as a source of inhibin) is related to a rapid increase in FSH-β mRNA, supporting the concept that the rate of FSH release is directly related to the rate of synthesis.


1994 ◽  
Vol 143 (1) ◽  
pp. 45-54 ◽  
Author(s):  
P A Fowler ◽  
P Cunningham ◽  
M Fraser ◽  
F MacGregor ◽  
B Byrne ◽  
...  

Abstract A penfusion system based on ovine pituitary tissue explants was used to investigate the effects of follicular fluid (hFF) and serum from superovulated women on pituitary responsiveness to gonadotrophin-releasing hormone (GnRH). The specific aims of the study were to determine both if gonadotrophin surge-attenuating factor (GnSAF) bioactivity is present in the peripheral circulation as well as in the follicles of superovulated women and if GnSAF suppresses GnRH self-priming in vitro. Two pulses of GnRH, 1 h apart, produced marked peaks in LH secreted from control chambers, with GnRH self-priming evident in the significant difference between the first (134·4±1·7–232·1±24·0% of basal secretion) and second (183·9±15·8–313·9±14·0% of basal secretion) LH peaks. Both follicular fluid and serum pooled from two different groups of women produced marked suppression of the first (unprimed) and second (primed) LH peaks. The hFF reduced the first LH peak to 69·6±7·8 and 60·2±9·7% and the second LH peak to 57·4±6·7 and 42·6±6·5% of control LH secretion. Overall, the serum reduced the first and second LH peaks to 76·8±4·2 and 62·9±3·6% of control respectively. These results demonstrated that GnSAF bioactivity suppresses GnRH self-priming, and is present in both the peripheral circulation and hFF. The same material administered to dispersed ovine pituitary monolayers produced similar marked suppression of GnRH-induced LH secretion, with approximately 50-fold less GnSAF bioactivity in serum compared with hFF. Combined doses of oestradiol and progesterone, or hFF from large follicles containing little GnSAF, produced stimulation of GnRH-induced LH secretion and GnRH self-priming (second peaks 78·1±38·9 and 27·4±15·7% respectively higher than first peaks). Thus, in conclusion, GnSAF in hFF and serum markedly attenuated both unprimed and primed pituitary response to GnRH, virtually abolishing the GnRH self-priming effect. Journal of Endocrinology (1994) 143, 45–54


1980 ◽  
Vol 58 (2) ◽  
pp. 220-222 ◽  
Author(s):  
M. Wilkinson ◽  
W. H. Moger ◽  
Liisa K. Selin

Porcine follicular fluid (PFF) contains a factor (inhibin or folliculostatin) which is reported to selectively inhibit the secretion of follicle-stimulating hormone (FSH) from the anterior pituitary gland. Chronic treatment of hemicastrate immature rats with PFF is able to partially inhibit the FSH-mediated hypertrophy of the remaining testis. However, the pituitaries from PFF-treated rats are paradoxically very sensitive to stimulation with gonadotrophin-releasing hormone (GnRH) and secrete significantly more FSH than control glands. Furthermore, this increased sensitivity results in a large increase in luteinizing hormone (LH) secretion. These observations suggest that under certain circumstances PFF is not selective for FSH and that it surprisingly stimulates rather than inhibits gonadotrophin secretion.


1991 ◽  
Vol 131 (2) ◽  
pp. 211-218 ◽  
Author(s):  
J. W. Gunnet ◽  
K. T. Demarest ◽  
D. W. Hahn ◽  
E. Ericson ◽  
J. L. McGuire

ABSTRACT Pituitary and ovarian function were studied during the loss and recovery of oestrous cyclical activity in rats following treatment with a sustained release formulation of the gonadotrophin-releasing hormone (GnRH) agonist [imidazole benzyl-d-His6,Pro9-ethylamide]-GnRH (histrelin). A single s.c. injection of microencapsulated histrelin (10–300 μg peptide/kg) induced a dose-dependent disruption of normal oestrous cyclical activity with a persistent dioestrous-like vaginal cytology. In preliminary studies, pituitary gland stimulation and desensitization were demonstrated when serum LH and FSH levels were greater 1 week after administration of 10 μg microencapsulated histrelin/kg compared with 300 μg microencapsulated histrelin/kg. Changes in pituitary and ovarian function were assessed over time following injection of microencapsulated histrelin (100 μg peptide/kg). LH secretion was maximal within 8 h and then gradually declined, remaining at dioestrous levels from days 7 to 28. Serum oestradiol concentrations remained low and rose above dioestrous levels only on day 28. In contrast, ovarian LH/human chorionic gonadotrophin (LH/hCG) receptor content fell within 8 h and, after a nadir on day 7, slowly returned to dioestrous levels by day 28. The increase in ovarian LH/hCG receptor content preceded any significant change in pituitary gonadotrophin secretion, indicating a differential pattern of recovery for pituitary and ovarian function. Subsequent studies tested the possibility that these temporal differences in pituitary and ovarian function may result from histrelin acting directly on these tissues. Treatment with histrelin microcapsules (300 μg peptide/kg) prevented any increase in LH secretion in response to a GnRH challenge 3 days later, indicating a direct action of histrelin on the pituitary gland. A direct action on the ovary was demonstrated by the ability of histrelin microcapsules (300 μg peptide/kg) to prevent stimulation of progesterone secretion by pregnant mare's serum gonadotrophin in hypophysectomized females. These studies indicated that, in the rat, histrelin can act simultaneously and independently on both the pituitary gland and the ovary. There are temporal differences in the pituitary and ovarian responses, with ovarian function recovering earlier than pituitary function. Journal of Endocrinology (1991) 131, 211–218


1978 ◽  
Vol 76 (3) ◽  
pp. 487-491 ◽  
Author(s):  
K. YAMASHITA ◽  
M. MIENO ◽  
T. SHIMIZU ◽  
ER. YAMASHITA

The rate of secretion of 17-oxosteroids by the testes of anaesthetized dogs in vivo was used as an index of LH secretion. Intracarotid injection of luteinizing hormone releasing hormone (LH-RH, 1, 5 or 10 μg/kg body wt) resulted in an increase in the testicular 17-oxosteroid secretion which was roughly proportional to the dose administered and which reached a maximum 60 min after the injection. Testicular output of 17-oxosteroids was unaffected by administration of melatonin (10 or 100 μg/kg body wt) into the carotid artery. When LH-RH (5 μg/kg) was injected into the carotid artery 3 h after intracarotid injection of melatonin (10 or 100 μg/kg), the testicular response to LH-RH was considerably diminished. Pretreatment with melatonin (100 μg/kg) did not alter the testicular response to human chorionic gonadotrophin (20 i.u./kg body wt) given i.v. It is concluded that melatonin may act directly on the anterior pituitary gland in dogs to inhibit the LH-RH-induced release of LH.


Vaccine ◽  
2007 ◽  
Vol 25 (18) ◽  
pp. 3544-3553 ◽  
Author(s):  
Mohammad A.H. Khan ◽  
Valerie A. Ferro ◽  
Shinsuke Koyama ◽  
Yukiko Kinugasa ◽  
Mihyon Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document