Circulating gonadotrophin surge-attenuating factor from superovulated women suppresses in vitro gonadotrophin-releasing hormone self-priming

1994 ◽  
Vol 143 (1) ◽  
pp. 45-54 ◽  
Author(s):  
P A Fowler ◽  
P Cunningham ◽  
M Fraser ◽  
F MacGregor ◽  
B Byrne ◽  
...  

Abstract A penfusion system based on ovine pituitary tissue explants was used to investigate the effects of follicular fluid (hFF) and serum from superovulated women on pituitary responsiveness to gonadotrophin-releasing hormone (GnRH). The specific aims of the study were to determine both if gonadotrophin surge-attenuating factor (GnSAF) bioactivity is present in the peripheral circulation as well as in the follicles of superovulated women and if GnSAF suppresses GnRH self-priming in vitro. Two pulses of GnRH, 1 h apart, produced marked peaks in LH secreted from control chambers, with GnRH self-priming evident in the significant difference between the first (134·4±1·7–232·1±24·0% of basal secretion) and second (183·9±15·8–313·9±14·0% of basal secretion) LH peaks. Both follicular fluid and serum pooled from two different groups of women produced marked suppression of the first (unprimed) and second (primed) LH peaks. The hFF reduced the first LH peak to 69·6±7·8 and 60·2±9·7% and the second LH peak to 57·4±6·7 and 42·6±6·5% of control LH secretion. Overall, the serum reduced the first and second LH peaks to 76·8±4·2 and 62·9±3·6% of control respectively. These results demonstrated that GnSAF bioactivity suppresses GnRH self-priming, and is present in both the peripheral circulation and hFF. The same material administered to dispersed ovine pituitary monolayers produced similar marked suppression of GnRH-induced LH secretion, with approximately 50-fold less GnSAF bioactivity in serum compared with hFF. Combined doses of oestradiol and progesterone, or hFF from large follicles containing little GnSAF, produced stimulation of GnRH-induced LH secretion and GnRH self-priming (second peaks 78·1±38·9 and 27·4±15·7% respectively higher than first peaks). Thus, in conclusion, GnSAF in hFF and serum markedly attenuated both unprimed and primed pituitary response to GnRH, virtually abolishing the GnRH self-priming effect. Journal of Endocrinology (1994) 143, 45–54

1992 ◽  
Vol 135 (2) ◽  
pp. 221-227 ◽  
Author(s):  
P. A. Fowler ◽  
C. Townsend ◽  
I. E. Messinis ◽  
P. Cunningham ◽  
A. Templeton

ABSTRACT Primary cultures of ovine pituitaries from adult ewes were used to investigate aspects of gonadotrophin surge-attenuating factor (GnSAF) bioactivity in human follicular fluid (hFF) from superovulated women. During the autumn and first half of the winter, LH secretion induced by gonadotrophinreleasing hormone (GnRH) was markedly reduced (43·5 ± 5·2% of control GnRH-induced LH secretion) by incubation for 48 h with steroid-free hFF. For the rest of the year, treatment with the same batch of steroid-free hFF resulted in non-significant reduction or stimulation of GnRH-induced LH secretion (71·3± 13·2 to 117·8±11·2% of control GnRH-induced LH secretion). Incubation of pituitary cells for 48 h with oestradiol (1 pmol/l to 1 μmol/l), progesterone (1 pmol/l to 1 μmol/l) or oestradiol and progesterone combined (1 pmol/l to 1 μmol/l) in a two-way titration for 48 h had no significant effect on GnRH-induced LH secretion (83·4±7·6 to 110·6±5·0% of control secretion). Separating hFF into fractions of different molecular mass by ultrafiltration demonstrated that GnSAF bioactivity was present in a form 10–30 kDa in size. Incubation for 48 h with these fractions had no significant effect on basal FSH secretion but significantly attenuated GnRH-induced LH secretion during the autumn. The same fractions had little effect on GnRH-induced LH secretion from pituitary cells collected during the summer. We conclude that ovine pituitaries display at least partial reduction in sensitivity to GnSAF outside the breeding season. In addition, neither oestradiol nor progesterone singly or in combination caused the observed attenuation of GnRH-induced LH secretion that is ascribed to GnSAF bioactivity. Journal of Endocrinology (1992) 135, 221–227


1992 ◽  
Vol 8 (2) ◽  
pp. 109-118 ◽  
Author(s):  
J. Brooks ◽  
W. J. Crow ◽  
J. R. McNeilly ◽  
A. S. McNeilly

ABSTRACT The modulation of FSH secretion at the beginning and middle of the follicular phase of the cycle represents the key event in the growth and selection of the preovulatory follicle. However, the mechanisms that operate within the pituitary gland to control the increased release of FSH and its subsequent inhibition in vivo remain unclear. Treatment of ewes with bovine follicular fluid (bFF) during the luteal phase has been previously shown to suppress the plasma concentrations of FSH and, following cessation of treatment on day 11, a rebound release of FSH occurs on days 12 and 13. When luteal regression is induced on day 12, this hypersecretion of FSH results in an increase in follicle growth and ovulation rate. To investigate the mechanisms involved in the control of FSH secretion, ewes were treated with twice daily s.c. injections of 5 ml bFF on days 3–11 of the oestrous cycle and luteal regression was induced on day 12 with prostaglandin (PG). The treated ewes and their controls were then killed on day 11 (luteal), or 16 or 32h after PG and their pituitaries removed and halved. One half was analysed for gonadotrophin and gonadotrophin-releasing hormone (GnRH) receptor content. Total pituitary RNA was extracted from the other half and subjected to Northern analysis using probes for FSH-β, LH-β and common α subunit. Frequent blood samples were taken and assayed for gonadotrophins. FSH secretion was significantly (P<0.01) reduced during bFF treatment throughout the luteal phase and then significantly (P<0.01) increased after cessation of treatment, with maximum secretion being reached 18– 22h after PG, and then declining towards control values by 32h after PG. A similar pattern of LH secretion was seen after bFF treatment. Pituitary FSH content was significantly (P<0.05) reduced by bFF treatment at all stages of the cycle. No difference in the pituitary LH content was seen. The increase in GnRH receptor content after PG in the controls was delayed in the treated animals. Analysis of pituitary mRNA levels revealed that bFF treatment significantly (P<0.01) reduced FSH-β mRNA levels in the luteal phase. Increased levels of FSH-β, LH-β and α subunit mRNA were seen 16h after PG in the bFF-treated animals, at the time when FSH and LH secretion from the pituitary was near maximum. These results suggest that the rebound release of FSH after treatment with bFF (as a source of inhibin) is related to a rapid increase in FSH-β mRNA, supporting the concept that the rate of FSH release is directly related to the rate of synthesis.


1977 ◽  
Vol 86 (4) ◽  
pp. 728-732 ◽  
Author(s):  
Y. Epstein ◽  
B. Lunenfeld ◽  
Z. Kraiem

ABSTRACT The aim of this study was to investigate effects of androgens on gonadotrophin release in response to gonadotrophin-releasing hormone (Gn-RH) stimulation in vitro. Hemipituitaries of mature male rats were pre-incubated for 90 min with T, DHT, 3α- or 3β-diol (4 ng or 4 μg/ml medium), and the incubation continued for 240 min after adding Gn-RH (1 ng/ml medium). Gn-RH caused a 4-5-fold rise in the secretion of LH and a 2-fold rise in FSH secretion. The effect of the androgens was dose-dependent. At low levels, T and DHT exerted no effect on Gn-RH-stimulated gonadotrophin release, whereas the two androstanediols (3α- and 3β-diol) augmented the Gn-RH stimulation of both gonadotrophins, though preferentially LH. With high doses of androgens, the results obtained showed: a) no effect of T; b) DHT suppression of the Gn-RH-stimulated FSH release; c) suppression of Gn-RH stimulation by 3α- and 3β-diol regarding both LH and FSH. It is concluded that T exerts through its reduced metabolites a feedback effect on the pituitary gland responsiveness to Gn-RH stimulation.


1982 ◽  
Vol 101 (2) ◽  
pp. 264-267 ◽  
Author(s):  
C. Ekholm ◽  
T. Hillensjö ◽  
W. J. Le Maire ◽  
C. Magnusson ◽  
C. S. Sheela Rani

Abstract. Previous studies have shown that gonadotrophin-releasing hormone (GnRH) can induce resumption of meiosis in follicle-enclosed rat oocytes. In the present study a GnRH antagonistic analogue ([d-pGlul, d-Phe2,-d-Trp3,6]LRF) was found to effectively abolish the stimulatory effect of a GnRH agonist upon resumption of meiosis and lactate accumulation in isolated pre-ovulatory rat follicles but the have no effect on LH stimulation of these parameters. It is concluded that although LH and GnRH can evoke a similar response they act through separate receptor sites and that it is unlikely that GnRH mediates the effect of LH on meiosis or glycolysis.


1990 ◽  
Vol 126 (2) ◽  
pp. 297-307 ◽  
Author(s):  
H. M. Picton ◽  
C. G. Tsonis ◽  
A. S. McNeilly

ABSTRACT The study investigated the relationship between the plasma concentration of FSH and the stimulation of preovulatory follicle growth in vivo in ewes chronically treated with the gonadotrophin-releasing hormone (GnRH) agonist buserelin (HOE 766). Welsh Mountain ewes with regular oestrous cycles were treated for 6 weeks with two discs implants placed s.c., each containing 5 mg of the agonist in a matrix of polyhydroxybutyric acid. Treatment with the agonist for 35 days produced a sustained suppression of the plasma concentration of FSH, stopped the pulsatile release of LH and prevented follicular development beyond 2·5 mm diameter. There was no difference between the total number of follicles > 1·0 mm diameter present in the ovaries of GnRH agonist-treated ewes and day 8 luteal phase control ewes. During the sixth week of agonist treatment ewes were infused with ovine FSH (6 μg NIADDK-oFSH16/h) in the presence of only basal concentrations of LH. After 24, 48, 72 or 120 h of FSH infusion, the mean number of follicles > 1 ·0 mm diameter per ewe was not significantly different between treated and control animals. Infusion of FSH caused a timedependent increase in (1) the number of follicles per ovary >2·5 mm, (2) the mean diameter of these follicles and (3) the proportion of the large follicles which could be classified as oestrogenic (> 3·7 nmol oestradiol/follicle per h in vitro). Injection of human chorionic gonadotrophin (750IU i.m.) after 120 h of FSH infusion caused the majority of these large follicles to ovulate and form apparently normal corpora lutea. These results indicate that, in the absence of pulsatile LH, FSH stimulates the growth of normal large oestrogenic follicles which, when stimulated, ovulate to produce viable corpora lutea. Journal of Endocrinology (1990) 126, 297–307


1980 ◽  
Vol 58 (2) ◽  
pp. 220-222 ◽  
Author(s):  
M. Wilkinson ◽  
W. H. Moger ◽  
Liisa K. Selin

Porcine follicular fluid (PFF) contains a factor (inhibin or folliculostatin) which is reported to selectively inhibit the secretion of follicle-stimulating hormone (FSH) from the anterior pituitary gland. Chronic treatment of hemicastrate immature rats with PFF is able to partially inhibit the FSH-mediated hypertrophy of the remaining testis. However, the pituitaries from PFF-treated rats are paradoxically very sensitive to stimulation with gonadotrophin-releasing hormone (GnRH) and secrete significantly more FSH than control glands. Furthermore, this increased sensitivity results in a large increase in luteinizing hormone (LH) secretion. These observations suggest that under certain circumstances PFF is not selective for FSH and that it surprisingly stimulates rather than inhibits gonadotrophin secretion.


1988 ◽  
Vol 117 (3) ◽  
pp. 431-439 ◽  
Author(s):  
P. G. Knight ◽  
R. J. Castillo

ABSTRACT Intact and chronically ovariectomized ewes were treated for 4 days with charcoal-treated bovine follicular fluid (FF) or charcoal-treated bovine serum during the late-anoestrous period, and the effects on basal and gonadotrophin-releasing hormone (GnRH)-induced secretion of LH and FSH observed. Subsequently, ewes received s.c. implants containing a sustained-release formulation of a potent GnRH agonist d-Ser(But)6-Azgly10-LHRH (ICI 118630) to desensitize pituitary gonadotrophs to hypothalamic stimulation, and the effects of bovine FF and bovine serum were re-assessed 2 weeks later. Chronic exposure (for 2–3 weeks) to ICI 118630 significantly reduced basal levels of LH and FSH in both intact and ovariectomized ewes and completely abolished both spontaneous LH pulses as well as exogenous GnRH-induced acute increases in plasma LH and FSH levels. Treatment with bovine FF significantly reduced plasma FSH levels, but not LH levels, in both intact and ovariectomized ewes before and after chronic exposure to ICI 118630. In intact ewes before exposure to ICI 118630, treatment with bovine FF actually enhanced pulsatile LH secretion and raised mean plasma LH levels by 240% (P <0·05). No such stimulatory effect of bovine FF on LH secretion was observed in intact ewes exposed to ICI 118630 or in ovariectomized ewes before or after exposure to ICI 118630, suggesting that the effect probably involved an alteration in ovarian steroid feedback affecting hypothalamic GnRH output. Treatment with bovine FF did not significantly affect the magnitude of GnRH-induced surges of LH or of FSH observed in either intact or ovariectomized ewes before exposure to ICI 118630. These observations indicate that charcoal-treated bovine FF, a rich source of inhibin, can directly suppress pituitary FSH secretion in vivo, irrespective of whether a functionally intact hypothalamo-pituitary-ovarian axis is present. J. Endocr. (1988) 117, 431–439


1986 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
J. E. A. McIntosh ◽  
R. P. McIntosh

ABSTRACT Our aim was to determine whether release of LH and FSH can be controlled differentially by the characteristics of applied signals of stimulatory gonadotrophin-releasing hormone (GnRH) alone, free of the effects of steroid feedback or other influences from the whole animal. The outputs of both gonadotrophins were significantly correlated (r≈0·90; P<0·0005) when samples of freshly dispersed sheep pituitary cells were perifused in columns for 7 h with medium containing a range of concentrations of GnRH in various patterns of pulses. Hormone released in response to the second, third and fourth pulses from every column was analysed in detail. Dose–response relationships for both LH and FSH were very similar when cells were stimulated with 5–8500 pmol GnRH/1 in 5-min pulses every hour. When GnRH was delivered in pulses at a maximally stimulating level, the outputs of both hormones increased similarly with increasing inter-pulse intervals. Efficiency of stimulation (release of gonadotrophin/unit stimulatory GnRH) decreased (was desensitized) with increasing pulse duration in the same way for both hormones. Thus, varying the dose, interval and duration of GnRH pulses did not alter the proportions of LH and FSH released in the short-term from freshly dissociated cells. However, the same cell preparations released more LH relative to FSH when treated with maximally stimulating levels of GnRH for 3 h in the presence of 10% serum from a sheep in the follicular phase of its ovulatory cycle compared with charcoal-treated serum. Because there was no gonadotrophin synthesis under the conditions used in vitro these results suggest that changes in the LH/FSH ratio seen in whole animals are more likely to result from differential clearance from the circulation, ovarian feedback at the pituitary, differential synthesis in intact tissue or another hormone influencing FSH secretion, rather than from differences in the mechanism of acute release controlled by GnRH. J. Endocr. (1986) 109, 155–161


Sign in / Sign up

Export Citation Format

Share Document