Cellular basis of luteal steroidogenesis in the human ovary

1989 ◽  
Vol 122 (1) ◽  
pp. 303-NP ◽  
Author(s):  
B. Fisch ◽  
R. A. Margara ◽  
R. M. L. Winston ◽  
S. G. Hillier

ABSTRACT A primary monolayer cell culture system was developed to investigate human corpus luteum (CL) function in vitro. Steroidogenic cells were isolated by collagenase dispersal and Percoll density-gradient fractionation from CLs enucleated at progressive stages of the luteal phase (tubal surgery patients). 'Pure' granulosa-lutein cells were aspirated from ovulatory follicles at mid-cycle (in-vitro fertilization patients). The steroidogenic capacity (progesterone/20α-dihydroprogesterone biosynthesis and aromatase activity) of isolated luteal cells was assessed in relation to CL development. Basal luteal cell steroidogenesis was maximal at around the expected time of ovulation and declined with CL age during the luteal phase. Conversely, human chorionic gonadotrophin (hCG)-responsive steroidogenesis was initially undetectable but developed as the luteal phase progressed. These results show that luteal cell steroidogenesis becomes increasingly dependent upon gonadotrophic support with CL age. This is evidence that functional luteolysis in human ovaries (1) is pre-programmed to occur at the cellular level, (2) is initiated automatically at the time of ovulation and (3) is reversed at the time of CL 'rescue' in early pregnancy by the direct action of trophoblastic hCG on steroidogenic luteal cells. The culture system described should be of value in further defining the control of human CL form and function at the cellular level. Journal of Endocrinology (1989) 122, 303–311

1985 ◽  
Vol 104 (2) ◽  
pp. 241-250 ◽  
Author(s):  
B. Kalison ◽  
M. L. Warshaw ◽  
G. Gibori

ABSTRACT To determine whether prolactin affects both luteal and follicular production of testosterone and oestradiol, pseudopregnant rats, either intact or hypophysectomized on day 8, were injected daily between days 8 and 9 with 1·5 i.u. human chorionic gonadotrophin (hCG), 250 μg prolactin or a combination of both. Control rats were given vehicle. On day 9, blood was obtained from the ovarian vein and corpora lutea and follicles were isolated and incubated in vitro for 2 h. Administration of hCG to intact rats increased ovarian secretion of testosterone and oestradiol dramatically, but did not affect progesterone secretion. Hypophysectomy on day 8 of pseudopregnancy was followed by a drop in ovarian steroid secretion. Prolactin treatment of hypophysectomized rats markedly enhanced progesterone production but had no stimulatory effect on either testosterone or oestradiol. In contrast, hCG dramatically enhanced ovarian secretion of both testosterone and oestradiol without affecting progesterone secretion. Prolactin administered together with hCG antagonized the stimulation of both testosterone and oestradiol secretion by hCG, yet increased progesterone production. When the specific effects of hCG and prolactin administration on follicles and corpora lutea were studied separately, it was found that hCG treatment in vivo greatly stimulated testosterone and oestradiol production by both tissues in vitro. Since hCG only marginally affected aromatase activity in the follicle, had no effect on aromatase activity in luteal cells and did not increase progesterone synthesis, it appears that hCG acts to increase the formation of androgen substrate for oestradiol biosynthesis. Prolactin, administered with or without hCG, inhibited both basal and hCG-stimulated testosterone and oestradiol synthesis by the follicle. In sharp contrast to its inhibitory effect on follicular production of steroids, prolactin appears to be essential for LH stimulation of testosterone and oestradiol by the corpus luteum. In the absence of prolactin, luteal cells gradually ceased to respond to LH and decreased their output of testosterone and oestradiol. Prolactin administration to hypophysectomized rats did not affect luteal cell production of either steroid. However, corpora lutea of rats treated with prolactin responded to the hCG challenge with an increase in testosterone and oestradiol synthesis. In summary, results of this investigation demonstrate that prolactin affects follicular and luteal production of testosterone and oestradiol in opposite ways. It acts on the follicle to inhibit both basal and LH-stimulated production of testosterone and oestradiol, yet it markedly enhances LH stimulation of testosterone and oestradiol synthesis by luteal cells. J. Endocr. (1985) 104, 241–250


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanglin Wu ◽  
Songying Zhang ◽  
Xiaona Lin ◽  
Shasha Wang ◽  
Ping Zhou

Abstract Background Various luteal phase supports (LPSs) have been proven to increase the pregnancy rate in fresh cycles of in vitro fertilization or intracytoplasmic sperm injection; however, there is still significant debate regarding the optimal use of LPS. Methods A systematic review with the use of a network meta-analysis was performed via electronic searching of Ovid MEDLINE, the Cochrane Library, Embase, Web of Science, ClinicalTrials.gov and Google Scholar (up to January 2021) to compare the effectiveness and safety of various LPSs, as well as to evaluate the effects of different initiations of LPSs on pregnancy outcomes. The primary outcomes included live birth and ongoing pregnancy, with the results presented as odds ratios (ORs) with 95% confidence intervals (CIs). Results Eighty-nine randomized controlled trials with 29,625 women comparing 14 interventions or placebo/no LPS treatments were included in the meta-analyses. No significant differences were found in terms of the pregnancy outcomes when LPS was started within 48 h after oocyte retrieval versus a delayed initiation between 48 h and 96 h after oocyte retrieval. The addition of gonadotropin-releasing hormone (GnRH) agonists to progesterone vaginal pessaries showed a significant benefit in terms of live birth (OR 1.39, 95% CI 1.08 to 1.78). Only human chorionic gonadotropin (HCG) was found to be more efficacious than the placebo/no LPS treatment in terms of live birth (OR 15.43, 95% CI 2.03 to 117.12, low evidence). Any active LPSs (except for rectal or subcutaneous progesterone) was significantly more efficacious than the placebo/no LPS treatment in terms of ongoing pregnancy, with ORs ranging between 1.77 (95% CI 1.08 to 2.90) for the vaginal progesterone pessary and 2.14 (1.23 to 3.70) for the intramuscular progesterone treatment. Among the comparisons of efficacy and tolerability between the active treatments, the differences were small and very uncertain. Conclusion Delays in progesterone supplementation until 96 h after oocyte retrieval does not affect pregnancy outcomes. The safety of GnRH agonists during the luteal phase needs to be evaluated in future studies before the applications of these agonists in clinical practice. With comparable efficacy and acceptability, there may be several viable clinical options for LPS.


1990 ◽  
Vol 2 (4) ◽  
pp. 351 ◽  
Author(s):  
YF Wong ◽  
EP Loong ◽  
KR Mao ◽  
PP Tam ◽  
NS Panesar ◽  
...  

Salivary oestradiol (E2) and progesterone (P) levels have been shown to reflect the biologically active fractions in the serum. The luteal-phase status of stimulated cycles was investigated after in vitro fertilization and embryo transfer (IVF-ET). Thirty patients were randomly allocated to one of three luteal therapy groups: group A had no support, group B had intramuscular P and group C had intramuscular P and human chorionic gonadotrophin (hCG). One pregnancy was achieved in group A, two in group B and three in group C. Significant correlations between salivary and serum levels of E2 and of P in matched samples during luteal phase were found. Salivary E2 levels from luteal day 8 through day 14 and P levels from day 3 through day 14 were significantly higher in the pregnant than in the nonpregnant cycles. Among the nonpregnant cycles, salivary E2 and P levels were significantly higher in group C than in group A or B. These findings suggest that, in stimulated cycles for IVF-ET, determination of salivary E2 and P levels may be used as reliable alternatives to serum concentrations for assessing the luteal phase. Also, the additional hCG has an enhanced luteotrophic effect, as reflected by the higher salivary E2 and P levels, which may lead to a better pregnancy rate.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


2017 ◽  
Vol 66 (5) ◽  
pp. 46-55 ◽  
Author(s):  
Pavel P. Yakovlev

The Aim of the study was to assess modern considerations about the role of aromatase P450 enzyme in female reproductive system and the effect of its activity on the protocols of in vitro fertilization (IVF). Materials: foreign and Russian literature data from 1978 to 2016. Methods:review and synthesis of publications has been performed. Conclusions: Ovarian aromatase is the key steroidogenesis enzyme of the female reproductive system. Its activity depends on many factors, both of intraovarian and extragonadal origin. The ovarian follicular response and oocyte quality in IVF may depend on aromatase activity.


2019 ◽  
Vol 191 (12) ◽  
pp. 40-44
Author(s):  
A. Barkova ◽  
M. Modorov ◽  
G. Isaeva ◽  
A. Krivonogova

Abstract. To carry out genome editing in cattle, an effective and well-functioning system for obtaining gametes, fertilizing eggs and their cryopreservation is necessary. Aim of the work: review and research of present-day existing methods of obtaining, insemination and cryopreservation of donor material, in order to provide genome editing in cows. Methods and materials. The work is completed according to the theme No. 0532-2019-0001 “Development of complex technology of marker-based genome selection of agricultural animals” within State Order of Ministry of Education and Science of the Russian Federation. The analysis of open scientific literature on the issues of in vitro fertilization in animals, cryopreservation of oocytes and embryons, sperm preparation and methods of insemination of cows’ oocytes, and cryopreservation of oocytes and embryons of animals is done. Features of the preparation of biological material of cattle for genome editing by microinjection into ooplasm are described. Results of research and duscussion. At present time there are two ways to obtain donor material from cattle: from live animals and taking ovaries after slaughtering cows. Material transportation is carried out at a temperature of 30–37 °C depending on the distance to the laboratory and expected time period of transportation. Oocyte-cumulus complexes can be removed by ovarian dissection and aspiration of visible follicles. In both cases, immature eggs are predominantly obtained. Subsequent ripening is carried out in vitro using special media in a CO2 incubator. The culture medium for oocyte maturation should contain hormones that mimic the peak of LH (luteinizing hormone), which occurs in vivo during the maturation of oocytes before ovulation. To accumulate a certain number of eggs at the stage of MII, it is recommended to carry out their cryopreservation by the method of vitrification, having previously released the oocyte from the cumulus cells. After thawing, oocytes need to be incubated for 2–3 hours 38.5 °C in 5–6.5% CO2 to restore the spindle. In order to make editing more effective, the introduction of genetic material is recommended to be carried out in parallel with the fertilization method “icsi”. In humans, mice and rabbits, an injection of sperm into the cytoplasm is sufficient to activate the oocyte, however, in cattle, just micro-injection of the sperm is not enough and often the male pronucleus does not form. To solve the problem, various methods are used, including freezing-thawing of sperm, resulting in damage of a membrane, or addition of heparin-glutathione into the medium that increases decondensation of the sperm DNA.


2020 ◽  
Author(s):  
Alexander Goikoetxea ◽  
Erin L Damsteegt ◽  
Erica V Todd ◽  
Andrew McNaughton ◽  
Neil J Gemmell ◽  
...  

AbstractMany teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, and steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17β-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e. sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.


Sign in / Sign up

Export Citation Format

Share Document