Mobilization of LH secretory granules in gonadotrophs in relation to gene expression, synthesis and secretion of LH during the preovulatory phase of the sheep oestrous cycle

1995 ◽  
Vol 147 (2) ◽  
pp. 259-270 ◽  
Author(s):  
R J W Currie ◽  
A S McNeilly

Abstract Changes in LH secretory granules in pituitary gonadotrophs throughout the sheep oestrous cycle were determined by immunogold localisation of LH at ultrastructural level by electron microscopy. Oestrous cycles in Welsh Mountain ewes were initially synchronised with progestagen sponges and studies carried out in the subsequent cycle. Animals were allocated at random to six groups each of five animals, one killed on day 12 of the luteal phase and the other groups after prostaglandin (PG)-induced luteal regression at PG plus 18 h (early follicular phase), oestrus (PG plus 33·6±1·0 h), oestrus plus 9 h just before the preovulatory LH surge, 1 h after GnRH agonist-induced LH surge at PG plus 48 h (mid-LH surge) and oestrus plus 24 h, after the preovulatory LH surge. Blood samples collected throughout confirmed the pulsatile secretion of LH before and the timing in relation to the preovulatory LH surge. Pituitaries were dissected and processed for transmission electron microscopy and frozen for later extraction of mRNA. Only a single type of LH cell was present in the sheep pituitary. In the luteal phase, LHimmunopositive secretory granules were distributed throughout the cytoplasm in 80% of cells while in 20% of cells granules were polarised to the region of the cell next to a vascular sinusoid. The percentage of polarised cells increased during the follicular phase to 45% at oestrus, 75% at oestrus plus 9 h just before the LH surge and 90% in mid-LH surge. Cell size increased in parallel with polarisation. Gonadotrophs after the LH surge were almost totally devoid of LH granules but prominent LHβ immunoreactivity was observed in the rough endoplasmic reticulum. Analysis of granule diameters revealed a single class of granules with a maximum diameter of 300 nm. Polarised cells had significantly fewer 130–150 nm granules than non-polarised cells, suggesting preferential exocytosis of LH-containing granules of this size from polarised cells. Northern analysis showed that LHβ mRNA levels decreased from luteal through the follicular phase. These results suggest that the preovulatory LH surge in sheep is not related to a change in synthesis of LH but to a progressive recruitment of gonadotrophs into a releasing state, priming, as indicated by polarisation of secretory granules to the region of the cell next to the vascular system. Journal of Endocrinology (1995) 147, 259–270

1995 ◽  
Vol 145 (2) ◽  
pp. 271-282 ◽  
Author(s):  
I J Clarke

Abstract Experiments were performed to test the hypothesis that there is a negative feedback 'clamp' of ovarian hormones on the hypothalamus and pituitary gland during the follicular phase of the oestrous cycle that limits the secretion of GnRH and LH. GnRH secretion was monitored by sampling the hypophysial portal blood of ewes during the luteal phase of the oestrous cycle and either 24 h or 48 h after the induction of luteolysis by the injection of cloprostenol, a prostaglandin analogue. There was an increase in GnRH pulse frequency in the transition from the luteal to the follicular phase of the cycle. A reduction in the amplitude of GnRH pulses did not occur until 48 h after cloprostenol, suggestive of negative feedback at the level of the hypothalamus that is more profound in the latter part of the follicular phase. The responsivity of the pituitary gland to GnRH was monitored in ewes during the luteal phase of the oestrous cycle and 24 h or 48 h after cloprostenol. Injections of 250 ng or 1000 ng GnRH were given (i.v.) to ewes that had been anaesthetised to suppress endogenous secretion of GnRH and LH. Using the lower dose, the responses 48 h after cloprostenol were not significantly different from those in the luteal phase. With the higher dose of GnRH, a significant (P<0·05) increase in mean responsivity was seen 48 h after cloprostenol. There was, however, a marked variation in response, with some ewes showing profound increases in LH secretion in response to GnRH and others showing responses that were similar to those obtained during the luteal phase of the cycle. These data are interpreted to mean that the secretion of LH is 'clamped' during the follicular phase of the oestrous cycle and the 'clamp' is only released near the time of the preovulatory LH surge. To test whether or not a rise in GnRH input to the pituitary gland could over-ride the 'clamp' on the pituitary secretion of LH in the late follicular phase of the cycle, sheep were treated 40 h after cloprostenol with either a bolus injection of 500 ng GnRH or four pulses of 125 ng GnRH given at 10-min intervals. These treatments caused small elevations in LH secretion but did not always cause preovulatory LH surges. In some cases, a small rise in LH secretion was induced by GnRH treatments and levels of LH in plasma returned to baseline with the preovulatory LH surge occurring a few hours later. In one clear case, a bolus injection of GnRH induced an LH surge. The overall data from the GnRH-treated groups, however, indicated a significant delay in the onset of the LH surge which may have been due to perturbation of the subcellular mechanisms in the gonadotrophs. These data were interpreted to mean that the secretion of LH from the pituitary gland is inhibited up to very soon before the onset of the LH surge. The inhibitory factor could be oestrogen but could also be some other pituitary feedback hormone such as gonadotrophin surge-attenuating factor. It is concluded that the increase in the secretion of GnRH at the time of the onset of the LH surge is closely linked to an increase in the responsivity of the gonadotrophs to GnRH. The latter is not caused by the increase in the secretion of GnRH. Journal of Endocrinology (1995) 145, 271–282


1989 ◽  
Vol 122 (2) ◽  
pp. 509-517 ◽  
Author(s):  
R. J. E. Horton ◽  
H. Francis ◽  
I. J. Clarke

ABSTRACT The natural opioid ligand, β-endorphin, and the opioid antagonist, naloxone, were administered intracerebroventricularly (i.c.v.) to evaluate effects on LH secretion in ovariectomized ewes and in ovariectomized ewes treated with oestradiol-17β plus progesterone either during the breeding season or the anoestrous season. Ovary-intact ewes were also studied during the follicular phase of the oestrous cycle. Jugular blood samples were taken at 10-min intervals for 8 h and either saline (20–50 μl), 100 μg naloxone or 10 μg β-endorphin were injected i.c.v. after 4 h. In addition, luteal phase ewes were injected i.c.v. with 25 μg β-endorphin(1–27), a purported endogenous opioid antagonist. In ovariectomized ewes, irrespective of season, saline and naloxone did not affect LH secretion, but β-endorphin decreased the plasma LH concentrations, by reducing LH pulse frequency. The effect of β-endorphin was blocked by administering naloxone 30 min beforehand. Treating ovariectomized ewes with oestradiol-17β plus progesterone during the breeding season reduced plasma LH concentrations from 6–8 μg/l to less than 1 μg/l. In these ewes, saline did not alter LH secretion, but naloxone increased LH pulse frequency and the plasma concentrations of LH within 15–20 min. During anoestrus, the combination of oestradiol-17β plus progesterone to ovariectomized ewes reduced the plasma LH concentrations from 3–5 μg/l to undetectable levels, and neither saline nor naloxone affected LH secretion. During the follicular phase of the oestrous cycle, naloxone enhanced LH pulse frequency, which resulted in increased plasma LH concentrations; saline had no effect. In these sheep, β-endorphin decreased LH pulse frequency and the mean concentrations of LH, and this effect was prevented by the previous administration of naloxone. The i.c.v. administration of β-endorphin(1–27) to luteal phase ewes did not affect LH secretion. These data demonstrate the ability of a naturally occurring opioid peptide to inhibit LH secretion in ewes during the breeding and non-breeding seasons, irrespective of the gonadal steroid background. In contrast, whilst the gonadal steroids suppress LH secretion in ovariectomized ewes during both seasons, they only appear to activate endogenous opioid peptide (EOP)-mediated inhibition of LH secretion during the breeding season. Furthermore, these data support the notion that LH secretion in ovariectomized ewes is not normally under the control of EOP, so that naloxone has no effect. Journal of Endocrinology (1989) 122, 509–517


1995 ◽  
Vol 7 (3) ◽  
pp. 303 ◽  
Author(s):  
RT Gemmell

The corpus luteum (CL) is a transitory organ which has a regulatory role in reproduction. Sharks, amphibians and reptiles have corpora lutea that produce progesterone which influences the rate of embryonic development. The egg-laying monotremes and the two major mammalian groups, eutherian and marsupial, have a CL that secretes progesterone. Most eutherians have allowed for the uterine development of their young by extending the length of the oestrous cycle and the CL or placenta actively secretes progesterone until birth. Gestation in the marsupial does not extend beyond the length of an oestrous cycle and the major part of fetal development takes place in the pouch. Where the extension of the post-luteal phase in the eutherian has allowed for the uterine development of young, the marsupial has extended the pre-luteal phase of the oestrous cycle and has evolved an alternative reproductive strategy, embryonic diapause. The mechanism for the secretion of hormones from the CL has been controversial for many years. Densely-staining secretory granules have been observed in the CL of sharks, marsupials and eutherians. These granules have been reported to contain relaxin, oxytocin or mesotocin, and progesterone. A hypothesis to suit all available data is that all hormones secreted by the CL are transported within such granules. In conclusion, although there are obvious differences in the mode of reproduction in the two main mammalian groups, it is apparent that there is a great deal of similarity in the hormonal control of regression of the CL and parturition.


2008 ◽  
Vol 20 (3) ◽  
pp. 386 ◽  
Author(s):  
O. J. Ginther ◽  
M. A. Beg ◽  
A. P. Neves ◽  
R. C. Mattos ◽  
B. P. L. Petrucci ◽  
...  

Plasma concentrations of FSH, LH, oestradiol and progesterone were studied daily during 12 interovulatory intervals and 21 periovulatory periods in nine Miniature ponies. The peak of the FSH surge that was temporally associated with emergence of the future ovulatory follicle occurred when the follicle was ~9 mm, compared with a reported diameter of 13 mm in larger breeds. The ovulatory LH surge involved a slow increase between Days 13 and 18 (ovulation = Day 0; 0.6 ± 0.1 ng day–1), a minimal increase or a plateau on Days 18 to 21 (0.04 ± 0.1 ng day–1), and a rapid increase after Day 21 (2.2 ± 0.4 ng day–1; P < 0.0001). The end of the plateau and the beginning of the rapid increase occurred on the day of maximum concentration in the oestradiol preovulatory surge. An unexpected mean increase and decrease in LH occurred (P < 0.04) on Days 5 to 9. Concentrations of oestradiol and progesterone seemed similar to reported results in larger breeds. Results indicated that in Miniature ponies the peak of the FSH surge associated with emergence of the future ovulatory follicle occurred at a smaller diameter of the future ovulatory follicle than in larger breeds, the ovulatory LH surge increased in three phases, and the ovulatory LH surge was followed by an LH increase and decrease during the early luteal phase.


Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 133-141 ◽  
Author(s):  
K Perry ◽  
W Haresign ◽  
D C Wathes ◽  
M Khalid

The complex anatomy of the ovine cervix limits the success of trans-cervical artificial insemination in sheep. However, there is a degree of natural relaxation of cervix at oestrus that is accompanied by an increase in the water content. As hyaluronan (HA) has a high affinity for water molecules, in this study, we tested the hypothesis that the HA content of the cervix, the proportion of different size fragments of HA and expression of its receptor CD44 vary with the stage of the oestrous cycle. Oestrous was synchronized in 25 Welsh mountain ewes, and their cervices were collected either during luteal phase (n=8) or pre-LH (n=8) or post-LH (n=9) surge stage of the oestrous cycle. The pre-LH surge group had the highest HA content (2.96 ng/mg of cervical tissue), which was significantly (P≤0.05) higher than that observed for the post-LH surge (2.04 ng/mg) group. The luteal phase group had a mean HA content intermediate between the pre- and post-LH surge groups, and was significantly different from either. The frequency of cervical samples containing both sizes of HA fragments (small and large) was significantly higher (P≤0.05) in the pre-LH surge group compared with the luteal and the post-LH surge groups, whereas that in post-LH surge group was significantly (P≤0.05) higher than that in the luteal group. The number of cervical samples that contained only small HA fragments was significantly (P≤0.05) higher in the luteal group compared with both the pre- and post-LH surge groups, whereas the number of samples containing only large HA fragments was significantly (P≤0.05) higher in the post-LH surge group compared with the luteal or pre-LH surge groups. Overall mean expression of CD44 in the vaginal and mid regions was significantly (P≤0.001) higher than that in the uterine region, with no difference between the vaginal and mid regions of the cervix. Pattern of CD44 expression depended on the stage of the oestrous cycle. At the luteal stage, CD44 expression did not vary among epithelial, sub-epithelial, circular and longitudinal smooth muscle layers, whereas at the pre- and post-LH surge stages, the expression in the epithelial layer was significantly (P≤0.001) higher than that in the other three layers. In general, CD44 expression in the transverse smooth muscle layer was significantly (P≤0.05) lower than the expression in all the other layers at all the stages of the oestrous cycle. The results indicated that the HA varied with the steroid status. Higher HA values at a time when cervical relaxation is naturally higher may indicate its involvement in remodelling of the cervix at oestrus.


Reproduction ◽  
2002 ◽  
pp. 509-513 ◽  
Author(s):  
DC Skinner ◽  
SD Cilliers ◽  
JD Skinner

Springbok are aseasonally breeding wild ungulates that inhabit arid environments, and interest has been shown in domesticating them for agricultural purposes. The present study was conducted for husbandry purposes to determine the effect of introducing a vasectomized ram to an isolated herd of springbok ewes (n = 9). Blood was collected from ewes every third day, before and after introduction of a vasectomized ram. Ewes were subjected to the ram for 42 days. Plasma progesterone was measured by radioimmunoassay and was used to establish the stage of the oestrous cycle. After introduction of the ram, the variation in the timing of the follicular phase between ewes was clearly reduced, compressing the spread of oestrus in the springbok ewes from 11 to 3 days. In seven of the nine ewes, the ram was introduced during the luteal phase of the oestrous cycle, causing this cycle to be significantly longer in duration (P < 0.05) and to have a higher maximum concentration of progesterone (P < 0.001) than cycles before and after introduction of the ram. This finding implies that the mechanism of synchronization operates through a luteotrophic effect. These results indicate that rams may be used successfully to synchronize breeding in springbok.


1989 ◽  
Vol 123 (2) ◽  
pp. 181-188 ◽  
Author(s):  
G. E. Mann ◽  
A. S. McNeilly ◽  
D. T. Baird

ABSTRACT The source of inhibin secretion by the ovary in the sheep at different stages of the oestrous cycle was investigated by in-vivo cannulation of the ovarian veins. Twenty-four Scottish Blackface ewes were allocated to four groups of six ewes, i.e. those operated on during the luteal phase (day 10), and those operated on during the follicular phase 24–30, 36 and 60 h following an injection of 125 μg cloprostenol on day 10 of the luteal phase. Samples of jugular and timed ovarian venous blood were collected under anaesthesia before and after enucleation of the corpus luteum. Ovaries were then removed and follicles dissected out. Following injection of cloprostenol, luteal regression occurred as indicated by a fall in the secretion of progesterone. The concentration of inhibin in jugular venous plasma and its ovarian secretion rate were similar at all stages of the follicular phase and during the luteal phase. In contrast, the secretion rate of oestradiol rose from 2·68 ±0·73 pmol/min during the luteal phase to 8·70± 2·24 pmol/min 24 h after injection of cloprostenol (P<0·05). Following enucleation of the corpus luteum the secretion rate of progesterone fell from 809 ± 270 pmol/min to 86 ± 30 pmol/min (P<0·001). There was also a smaller, artifactual fall in the secretion rate of oestradiol following enucleation of the corpus luteum, which was of similar size to a fall seen in the secretion rate of inhibin. This resulted in a significant (P<0·001) fall in the ratio of progesterone to inhibin, while the oestradiol to inhibin ratio remained unchanged. The secretion rate of inhibin from ovaries containing luteal tissue was similar to that from the contralateral side without luteal tissue (1·41±0·30 compared with 1·32±0·30 ng/min), while ovaries with large antral follicles secreted significantly (P< 0·001) more inhibin than those with no follicles ≥3 mm (2·28 ± 0·36 compared with 0·25 ±0·06 ng/min). From these results we conclude that, in the sheep, large antral follicles are responsible for most, if not all, the secretion of inhibin by the ovary at all stages of the oestrous cycle, and that the corpus luteum secretes little or no immunoactive or bioactive inhibin. Due to the fact that, unlike inhibin, the secretion rate of oestradiol rises during the follicular phase of the cycle, when the concentration of FSH is suppressed, it seems likely that oestradiol rather than inhibin is the major ovarian factor modulating the change in FSH secretion seen at this stage of the oestrous cycle. Journal of Endocrinology (1989) 123, 181–188


1992 ◽  
Vol 8 (3) ◽  
pp. 259-264 ◽  
Author(s):  
D. J. Tisdall ◽  
D. F. Hill ◽  
G. B. Petersen ◽  
J. S. Fleming

ABSTRACT We have isolated ovine follistatin cDNA from an ovarian follicle cDNA library and determined its sequence. The deduced amino acid sequence of the ovine follistatin precursor is highly homologous (>97%) to the porcine, human and rat follistatins. Northern analysis was used to characterize follistatin gene expression in ovaries of adult ewes, collected from days 11 to 13 of the oestrous cycle. Two major (about 2.7kb and 1.5 kb) and one minor (about 0.5 kb) transcripts were detected in polyadenylated RNA extracted from ovarian follicles and corpora lutea. The degree of expression of the transcripts varied in the two ovarian compartments, with the 2.7kb species predominating in the follicles and the 1.5kb species being more abundant in the corpora lutea. No transcripts were detected in stromal tissue containing preantral follicles of <1 mm.


2009 ◽  
Vol 21 (5) ◽  
pp. 672 ◽  
Author(s):  
Chatchote Thitaram ◽  
Pornsawan Pongsopawijit ◽  
Saran Chansitthiwet ◽  
Janine L. Brown ◽  
Kannikar Nimtragul ◽  
...  

A unique feature of the reproductive physiology of Asian elephants (Elephas maximus) is the occurrence of two LH surges before ovulation, instead of one. An anovulatory LH (anLH) surge, the function of which is unknown, occurs consistently 3 weeks before the ovulatory LH (ovLH) surge that induces ovulation. Thus, the ability to induce an ovLH surge would be useful for scheduling natural mating or artificial insemination. The present study tested the efficacy of a gonadotrophin-releasing hormone agonist (GnRH-Ag) to induce LH surges during the follicular phase of the oestrous cycle, which resulted in varied LH responses, but generally none were as high as previously documented natural surges. Thus, for the ovulation-induction trials, nine females were administered 80 μg GnRH-Ag intravenously at three time periods during the oestrous cycle, namely the anovulatory follicular phase, the ovulatory follicular phase and the luteal phase. During the late anovulatory follicular phase, nine of 10 females (90%) responded with an immediate LH surge followed 15–22 days later by an ovLH surge or a post-ovulatory increase in progestagens. In contrast, despite responding to the GnRH-Ag with an immediate increase in LH, none of the females treated during other periods of the oestrous cycle exhibited subsequent ovLH surges. One cow got pregnant from natural mating following the induced ovLH surge. In conclusion, ovLH induction is possible using a GnRH-Ag, but only during a specific time of the anovulatory follicular phase.


Sign in / Sign up

Export Citation Format

Share Document