scholarly journals Influence of steroids and GnRH on biosynthesis and secretion of secretogranin II and chromogranin A in relation to LH release in LbetaT2 gonadotroph cells

2002 ◽  
Vol 174 (3) ◽  
pp. 473-483 ◽  
Author(s):  
L Nicol ◽  
M Stridsberg ◽  
JL Crawford ◽  
AS McNeilly ◽  

The granin proteins secretogranin II (SgII) and chromogranin A (CgA) are commonly found associated with LH and/or FSH within specialised secretory granules in gonadotroph cells, and it is possible that they play an important role in the differential secretion of the gonadotrophins. In this study we have examined the regulation of the biosynthesis and secretion of SgII and CgA, in relation to LH secretion, in the LbetaT2 mouse pituitary gonadotroph cell line. Three experiments were carried out to investigate the effects of oestradiol (E2) and dexamethasone (Dex) in the presence and absence of GnRH (experiment 1), differing GnRH concentrations (experiment 2) and alterations in GnRH pulse frequency (experiment 3). In experiment 1, exposure to E2, Dex or E2+Dex, either with or without GnRH treatment, resulted in increased LH secretion. Steroids alone had no effect on LHbeta mRNA levels, but in the presence of GnRH LHbeta mRNA levels were increased in Dex- and E2+Dex-treated cells. GnRH receptor (GnRH-R) mRNA levels were up-regulated by Dex and E2+Dex, but were unaffected by GnRH. There were no steroid-induced changes in SgII or CgA mRNA, but increased levels of CgA mRNA were observed after GnRH treatment in cells cultured in the presence of Dex. In experiment 2, increasing concentrations of GnRH resulted in increases in LH secretion that were inversely dose-dependent. No changes in LHbeta, GnRH-R or SgII mRNA levels were observed, but there were dose-dependent increases in CgA mRNA levels. In experiment 3, GnRH was given as either 1 pulse/day or 4 pulses/day for 3 days. Both pulse regimes resulted in increased LH, SgII and CgA secretion compared with controls during the first 15 min pulse on day 3. Exposure to GnRH at 4 pulses/day increased LH and SgII secretion compared with controls during all 4 pulses, but secretion of both proteins was reduced during pulses 2-4 compared with pulse 1. CgA secretion also increased due to GnRH in pulse 1, but was decreased by GnRH treatment during pulse 2, and unchanged by GnRH during pulses 3 and 4. Total daily secretion of LH and SgII from cells given 1 pulse/day of GnRH increased compared with controls on all three treatment days, while total CgA secretion increased in response to GnRH on days 2 and 3 only. Intracellular levels of SgII, but not LH, decreased after GnRH treatment. In contrast, intracellular CgA was increased, but only after 4 pulses/day of GnRH. Levels of LHbeta, but not SgII, mRNA were increased by both pulse regimes, while CgA mRNA levels increased after 1 pulse/day of GnRH. These results indicate that there is a close correlation between the GnRH-stimulated release of LH and SgII from LbetaT2 cells, suggesting that SgII may have an influential role in the regulated secretion of LH, possibly by inducing LH aggregation to facilitate trafficking into secretory granules. CgA secretion does not appear to be closely associated with that of LH, but CgA expression does appear to be regulated by GnRH, which may indicate involvement in the control of LH secretion, possibly by influencing the proportion of LH in the different types of secretory granules.

2004 ◽  
Vol 32 (2) ◽  
pp. 467-480 ◽  
Author(s):  
L Nicol ◽  
M Stridsberg ◽  
AS McNeilly ◽  

This study investigated the role of the secretory granule proteins, secretogranin II (SgII) and chromogranin A (CgA), in the differential secretion of FSH and LH from LbetaT2 mouse gonadotroph cells. Exogenous activin, which synergises with GnRH, is essential for the release of FSH from these cells, but also has stimulatory effects on LH and enhances GnRH-induced LH secretion. Two experiments are reported. In experiment 1, cultures were supplemented with activin (0-50 ng/ml), with and without a daily 1 h treatment of 10 nM GnRH, for 3 days. Protein secretion and mRNA levels were measured. In experiment 2, cells were treated with activin (50 ng/ml) alone, a daily 1 h treatment of 10 nM GnRH, or a combination of both for 6 days. In addition, cells exposed to activin+GnRH for 3 days were subsequently left untreated or given activin or GnRH alone for a further 3 days for comparison with cells maintained in activin+GnRH for 6 days. Protein secretion, intracellular protein and mRNA levels were measured. FSH secretion was stimulated, dose dependently, by activin and this effect increased synergistically in the presence of GnRH. The close correlation between secreted and intracellular FSH and FSHbeta mRNA levels was maintained in cells that had undergone treatment withdrawal after previous exposure to activin+GnRH, but there was no correlation between FSH and the granins. These results are consistent with the view that FSH released in response to activin/GnRH is constitutively secreted via a granin-independent pathway. SgII secretion mirrored the GnRH-induced secretion of LH, but was unaffected by activin, which stimulated LH secretion and had a detrimental effect on CgA mRNA transcription. This confirms previous observations that the LH released in response to GnRH is co-released with SgII via a regulated, granin-dependent pathway, and, in addition, suggests that activin may stimulate LH secretion through a constitutive, granin-independent pathway.


Endocrinology ◽  
2012 ◽  
Vol 153 (10) ◽  
pp. 4894-4904 ◽  
Author(s):  
P. Grachev ◽  
X. F. Li ◽  
J. S. Kinsey-Jones ◽  
A. L. di Domenico ◽  
R. P. Millar ◽  
...  

Abstract Neurokinin B (NKB) and its receptor (NK3R) are coexpressed with kisspeptin, Dynorphin A (Dyn), and their receptors [G-protein-coupled receptor-54 (GPR54)] and κ-opioid receptor (KOR), respectively] within kisspeptin/NKB/Dyn (KNDy) neurons in the hypothalamic arcuate nucleus (ARC), the proposed site of the GnRH pulse generator. Much previous research has employed intracerebroventricular (icv) administration of KNDy agonists and antagonists to address the functions of KNDy neurons. We performed a series of in vivo neuropharmacological experiments aiming to determine the role of NKB/NK3R signaling in modulating the GnRH pulse generator and elucidate the interaction between KNDy neuropeptide signaling systems, targeting our interventions to ARC KNDy neurons. First, we investigated the effect of intra-ARC administration of the selective NK3R agonist, senktide, on pulsatile LH secretion using a frequent automated serial sampling method to obtain blood samples from freely moving ovariectomized 17β-estradiol-replaced rats. Our results show that senktide suppresses LH pulses in a dose-dependent manner. Intra-ARC administration of U50488, a selective KOR agonist, also caused a dose-dependent, albeit more modest, decrease in LH pulse frequency. Thus we tested the hypothesis that Dyn/KOR signaling localized to the ARC mediates the senktide-induced suppression of the LH pulse by profiling pulsatile LH secretion in response to senktide in rats pretreated with nor-binaltorphimine, a selective KOR antagonist. We show that nor-binaltorphimine blocks the senktide-induced suppression of pulsatile LH secretion but does not affect LH pulse frequency per se. In order to address the effects of acute activation of ARC NK3R, we quantified (using quantitative RT-PCR) changes in mRNA levels of KNDy-associated genes in hypothalamic micropunches following intra-ARC administration of senktide. Senktide down-regulated expression of genes encoding GnRH and GPR54 (GNRH1 and Kiss1r, respectively), but did not affect the expression of Kiss1 (which encodes kisspeptin). We conclude that NKB suppresses the GnRH pulse generator in a KOR-dependent fashion and regulates gene expression in GnRH neurons.


2009 ◽  
Vol 202 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Kikuko Hotta ◽  
Masahiro Hosaka ◽  
Atsushi Tanabe ◽  
Toshiyuki Takeuchi

Functional variations in the secretogranin III (SCG3) gene are associated with susceptibility to obesity. SCG3 forms secretory granules with orexin, melanin-concentrating hormone (MCH), neuropeptide Y (NPY), and POMC in the hypothalamus. In this study, we screened proteins for SCG3-binding activity and identified secretogranin II (SCG2) using a yeast two-hybrid system. Immunoprecipitation revealed that SCG2 interacts with SCG3. In situ hybridization and immunohistochemistry indicated that SCG2 was highly expressed in the lateral hypothalamic area, paraventricular nucleus, and arcuate nucleus of the hypothalamus. Double-labeling immunohistochemical analysis demonstrated that SCG2 was expressed in orexin-, MCH-, NPY-, and POMC-expressing neurons. SCG2 was also coexpressed with SCG3. Upon introduction into neuroblastoma cells, SCG2 was expressed in the cytosol and formed granule-like structures with SCG3, orexin, NPY, or POMC. SCG3 bound to POMC; however, it did not bind to orexin, MCH, or NPY. By contrast, SCG2 formed aggregates with orexin, MCH, NPY, and POMC. SCG2 may act as a hormone carrier for orexin, MCH, NPY, and POMC by binding with SCG3, which targets proteins to the secretory granules. SCG2 mRNA levels increased along with those of SCG3, orexin, MCH, and NPY after a 24-h fast, suggesting that the SCG2/SCG3 system may respond in an adaptive manner to acute body weight changes. However, this SCG2/SCG3 system appears to be unresponsive to chronic body weight changes, such as diet-induced obesity or obesity in ob/ob mice. We suggest that SCG2, as well as SCG3, may be a potential regulator of food intake based on its capacity to accumulate appetite-related hormones into secretory granules.


1994 ◽  
Vol 143 (1) ◽  
pp. 25-32 ◽  
Author(s):  
D J Tortonese ◽  
G A Lincoln

Abstract This study was conducted to investigate whether the photoperiodic regulation of the seasonal changes in pulsatile LH secretion in the ram involves changes in the activity of inhibitory hypothalamic dopaminergic (DA) pathways. To test this hypothesis, a series of experiments was carried out in Soay rams in which the effects of a DA-D2 receptor antagonist (sulpiride) or a DA-D2 receptor agonist (bromocriptine) on the pulsatile secretion of LH were determined under both long and short days. In each experiment blood samples were collected every 10 min for 8 h starting at the time of vehicle, sulpiride or bromocriptine injections to assess concentrations of LH. Sulpiride (0·59 mg/kg, s.c.) administered to rams under long days induced an immediate and sustained increase in the secretion of LH that lasted for approximately 4 h (P<0·05; ANOVA); this LH response reflected both a rise in mean concentrations (0·247 ± 0·03 vs.0·452 ± 0·1 μg/1) and an increase in the frequency of LH pulses (0·5±0·5 vs. 2·33±0·42 pulses/8 h; P<0·01). In contrast, under short days sulpiride had no effect. Bromocriptine (0·06 mg/kg, s.c.) administered to rams under long days, when LH concentrations were low, was without effect, but when given to rams under short days significantly (P<0·05) suppressed mean LH concentrations (0·627 ±0·08 vs. 0·320 ± 0·02 μg/l) and LH pulse frequency (4·86 ±0·46 vs. 2·43 ±0·37 pulses/8 h). In an additional experiment, pimozide (total dose: 0·16 mg/kg, i.m.), a DA antagonist less specific for DA-D2 receptors than sulpiride, was ineffective in modifying LH secretion in sexually inactive rams exposed to long days. These results are consistent with the hypothesis that an inhibitory dopaminergic system is involved in the regulation of pulsatile LH secretion in the ram. The induced changes in LH pulse frequency under long days (increased by sulpiride) and under short days (decreased by bromocriptine) indicate that, under both photoperiods, DA acts within the hypothalamus, via a specific DA-D2 receptor, to influence pulsatile GnRH secretion. A photoperiodic-induced activation of this inhibitory system may therefore represent the mechanism whereby long days suppress LH secretion and lead to the sexually inactive state characteristic of the non-breeding season. Journal of Endocrinology (1994) 143, 25–32


1991 ◽  
Vol 128 (3) ◽  
pp. 403-410 ◽  
Author(s):  
P. G. Knight ◽  
J. H. M. Wrathall ◽  
R. G. Glencross ◽  
B. J. McLeod

ABSTRACT It has been shown previously that treatment of seasonally anoestrous ewes with steroid-free bovine follicular fluid (FF), a crude inhibin-containing preparation, leads to a decrease in plasma FSH level which is accompanied by a marked increase in pulsatile LH secretion. Since FF contains several factors (e.g. activin, follistatin, unidentified components) other than inhibin, which might act to modify gonadotrophin secretion, it was of interest to establish whether these concurrent effects of FF on FSH and LH secretion persisted in ewes which had been actively immunized against a synthetic peptide replica of the α subunit of bovine inhibin. In June 1989 (anoestrous period) groups of inhibin-immune and control ewes (n = 5 per group) received 6-hourly s.c. injections of either bovine serum (2 ml) or one of two doses of FF (0·5 ml or 2 ml) for 3 days. Blood was withdrawn at 6-h intervals for 6 days beginning 24 h before the first injection. On the final day of treatment, additional blood samples were withdrawn at 15-min intervals for 8 h to monitor pulsatile LH secretion. Ewes were then challenged with exogenous gonadotrophin-releasing hormone (GnRH; 2 μg i.v. bolus) to assess pituitary responsiveness. In control ewes, FF promoted a dose-dependent suppression of basal (maximum suppression 65%; P < 0·01) and post-GnRH (maximum suppression 72%; P < 0·01) levels of FSH in plasma. This was accompanied by an increase (P < 0·01) in LH pulse frequency from 1·40±0·24 (s.e.m.) to 3·20±0·37 pulses/8 h. In contrast, FF did not affect secretion of either FSH or LH in inhibin-immunized ewes. However, mean plasma LH levels in immunized ewes were significantly lower (43%; P < 0·02) than in control ewes, irrespective of treatment. These findings indicate that in the anoestrous ewe the ability of FF to suppress plasma FSH is due entirely to its content of inhibin, that FF-induced enhancement of pulsatile LH secretion is mediated by inhibin, rather than some additional component of FF, and that immunoneutralization of endogenous inhibin can reduce LH secretion. Journal of Endocrinology (1991) 128, 403–410


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A744-A744
Author(s):  
Christopher Rolland McCartney ◽  
Su Hee Kim ◽  
Jessica A Lundgren ◽  
Christine Michele Burt Solorzano ◽  
James T Patrie

Abstract In women pretreated with estradiol (E2), exogenous progesterone (P4) acutely augments LH and FSH release (P4 positive feedback). Women with PCOS exhibit impaired P4 negative feedback on LH pulse frequency, but it remains unclear whether such women exhibit impaired P4 positive feedback on LH/FSH release. We sought to explore the latter notion as an a priori secondary hypothesis in a study primarily designed to assess whether P4 acutely suppresses LH pulse frequency. We studied 12 women with PCOS and 12 normally-cycling, non-hyperandrogenic controls. After 3 days of transdermal E2 pretreatment (0.2 mg/day), subjects were admitted to the Clinical Research Unit (CRU) for a 24-hour frequent blood sampling protocol starting at 2000 h. (CRU admissions occurred no earlier than cycle day 7 in PCOS and between days 7 and 11 inclusive in controls.) At 0600 h, subjects received either 100 mg oral micronized P4 or placebo (PBO). In a subsequent menstrual cycle, subjects underwent an identical CRU protocol except that P4 was exchanged for PBO or vice versa. LH secretion was analyzed using Autodecon, a deconvolution program that provides estimates of LH pulse frequency, pulsatile LH secretion (amount of LH secreted as pulses), and basal (non-pulsatile) LH secretion. Results were analyzed using 2-period crossover design analysis of covariance. In both groups, neither LH pulse frequency nor basal LH secretion changed significantly with P4 (compared to changes with PBO). Mean LH increased with P4 in both groups—3.1-fold (95% CI, 2.4–4.0) in controls and 2.7-fold (95% CI, 2.1–3.5) in PCOS; in both groups, P4-related changes were significantly greater than PBO-related changes (Bonferroni-corrected p=0.012 and 0.010, respectively). In controls, pulsatile LH secretion increased 3.5-fold (95% CI, 2.3–5.2) with P4—significantly more than with PBO (p=0.029); while in PCOS, a 2.6-fold (95% CI, 1.8–3.9) increase with P4 was not significantly different from changes with PBO (p=0.911). In controls, mean FSH increased 2.0-fold (95% CI, 1.7–2.3) with P4—significantly more than with PBO (p=0.004); but in PCOS, a 1.5-fold (95% CI, 1.3–1.8) increase was not significantly different from changes with PBO (p=0.072). Despite the above, between-group (PCOS vs. controls) differences in P4-induced changes in pulsatile LH secretion and mean FSH were not formally (statistically) demonstrable. Between-group differences representing potential confounders included age (median 25.5 vs. 19.0 y; p=0.029), body mass index (29.9 vs. 21.8 kg/m2; p=0.006), and cycle day of CRU admissions (day 45.0 vs. 10.4 for P4 admissions; 30.0 vs. 10.0 for PBO admissions). In summary, these data suggest that P4-induced increases in pulsatile LH secretion and mean FSH may be blunted in PCOS compared to controls, which could contribute to ovulatory dysfunction in PCOS. However, our results do not confirm this possibility, and further study is needed.


2006 ◽  
Vol 190 (3) ◽  
pp. 837-846 ◽  
Author(s):  
Judith L Turgeon ◽  
Dennis W Waring

Manipulation of endogenous progesterone receptor (PR) does not produce equivalent physiological effects in mouse and rat pituitary cells. To test whether this may be due in part to difference in PR isoform expression, we examined hormonally regulated pituitary PR-A and PR-B mRNA levels using quantitative real-time PCR. The LβT2 mouse gonadotrope line or pituitary cells from adult, ovariectomized rats or mice were cultured with or without 0.2 nM 17β-estradiol (E2) for 3 days. PR-A was the predominant form expressed for all groups. For mouse cells, E2 led to an increase in both isoforms without a change in the A:B ratio; for rat cells, the PR-B response to E2 was more robust resulting in a decrease in the A:B ratio. Exposure of E2-treated pituitary cells to 200 nM progesterone for 6 h decreased both PR-A and PR-B levels in rat cells, but had no effect on PR isoform expression in mouse cells even when exposure was extended to 12 h. The low level of PR expression found in LβT2 gonadotropes was unaffected by E2, alone or with progesterone. The weak PR expression and lack of responsiveness of LβT2 cells cannot be explained by a male phenotype as was shown by the more than tenfold higher PR mRNA level in primary cultures of male mouse pituitary cells, which responded to E2 stimulation with a proportional increase in PR isoforms similar to female cells. Functionally, E2-stimulated changes in PR mRNA isoform ratios in rat, mouse or LβT2 cells correlated with the degree of progesterone augmentation of GnRH-stimulated LH secretion in these models. These results are consistent with the hypothesis that robust GnRH priming and progesterone augmentation of LH secretion in the rat compared to these events in the mouse are a consequence, in part, of differences in the E2-modulated ratio of PR isoforms.


2002 ◽  
Vol 175 (2) ◽  
pp. 395-404 ◽  
Author(s):  
DW Miller ◽  
PA Findlay ◽  
MA Morrison ◽  
N Raver ◽  
CL Adam

The role of leptin in neuroendocrine appetite and reproductive regulation remains to be fully resolved. A series of three experiments was conducted using adequately nourished oestradiol-implanted castrated male sheep. In a cross-over design (n=6), responses to a single i.c.v. (third ventricle) injection of leptin (0.5, 1.0 and 1.5 mg ovine leptin (oLEP) and 1.0 mg murine leptin (mLEP)), N-methyl-D-aspartate (NMDA, 20 micro g) or 0.9% saline (control) were measured in terms of LH secretion (4 h post-injection compared with 4 h pre-injection) and appetite (during 2 h post-injection) in autumn (Experiment 1). NMDA and 1.0 mg oLEP treatments were repeated in the same sheep in the following spring (Experiment 2). With an additional 12 sheep (n=18 in cross-over design), responses to low-dose 'physiological' i.c.v. infusion of leptin (8 ng/h for 12 h daily for 4 days), insulin (0.7 ng/h) and artificial cerebrospinal fluid were measured in the next spring (Experiment 3). LH was studied over 8 h and appetite over 1 h on days 1 and 4 of infusion. In Experiment 1 (autumn), oLEP overall increased LH pulse frequency by up to 110% (P<0.05), decreased LH pulse amplitude (P<0.05) and decreased appetite (P<0.05). mLEP reduced LH pulse amplitude (P<0.05) without significant effect on appetite, while NMDA reduced appetite (P<0.05) but had no effect on LH. In Experiment 2 (spring), LH responses were 'surge-like' with highly significant increases in the moving average LH concentration after 1.0 mg oLEP (P<0.001) and after NMDA (P<0.001). Compared with similar analysis of experiment 1 results, the LH response in spring was greater than that in autumn for both 1.0 mg oLEP (P<0.05) and NMDA (P<0.005). Conversely, unlike in autumn (Experiment 1), there was no effect of 1.0 mg oLEP or NMDA on appetite in the spring (Experiment 2). In Experiment 3 (spring), 'physiological' i.c.v. infusion of oLEP or insulin increased LH pulse frequency by up to 100% (P<0.001) compared with the control infusion on both days 1 and 4, but there were no effects on appetite. These results indicate that intracerebral leptin both stimulates reproductive neuroendocrine output and decreases appetite in adequately nourished sheep. However, the responses of these two axes were dose-dependent and differentially affected by the time of year, suggesting dissociation of the neural pathways involved.


1992 ◽  
Vol 40 (4) ◽  
pp. 523-533 ◽  
Author(s):  
P Rosa ◽  
M Bassetti ◽  
U Weiss ◽  
W B Huttner

To investigate the constituents of the matrix of endocrine secretory granules, we analyzed endocrinoilogically silent ("non-functioning") human pituitary adenomas for the occurrence of the chromogranins/secretogranins (granins), a protein family normally stored together with many different hormones. When five non-functioning pituitary adenomas were analyzed by immunoblotting using polyclonal and monoclonal antibodies specific for individual members of the granin family, chromogranin A was detected in four cases and chromogranin B and secretogranin II were detected in all cases. The cellular distribution of the granins and of various hormones known to be expressed in the anterior pituitary was studied by immunocytochemistry in fixed, frozen tissue sections from five additional adenomas. Of the eight hormones investigated, only thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone were detected, occurring in only two of the five adenomas. In contrast, granins were found in all five tumors. Chromogranin B and secretogranin II were detected in each of the adenomas in virtually every cell studied, whereas chromogranin A exhibited such a widespread cell distribution in only three adenomas, being focally present in one and absent from the other tumor. The subcellular localization of the granins and the three glycoprotein hormones was investigated by double immunoelectron microscopy. Chromogranin A and chromogranin B were mainly co-localized in secretory granules, whereas secretogranin II was either co-localized with the other two granins or segregated to different secretory granules. When present, glycoprotein hormones were immunodetected in both the secretory granules containing all three granins and those containing mainly secretogranin II. Our data indicate that in non-functioning pituitary adenomas chromogranin A is differentially expressed from chromogranin B and secretogranin II. Moreover, the granins appear to be the most widespread constituents of endocrine secretory granules known, forming the dense-core matrix irrespective of the presence or absence of hormones.


Sign in / Sign up

Export Citation Format

Share Document