scholarly journals NO-1886 decreases ectopic lipid deposition and protects pancreatic beta cells in diet-induced diabetic swine

2004 ◽  
Vol 180 (3) ◽  
pp. 399-408 ◽  
Author(s):  
W Yin ◽  
D Liao ◽  
M Kusunoki ◽  
S Xi ◽  
K Tsutsumi ◽  
...  

The synthetic compound NO-1886 (ibrolipim) is a lipoprotein lipase activator that has been proven to be highly effective in lowering plasma triglycerides. Recently, we found that NO-1886 also reduced plasma free fatty acids and glucose in high-fat/high-sucrose diet-induced diabetic rabbits. In the current study, we investigated the effects of NO-1886 treatment on ectopic lipid deposition and the islet pathology in miniature swine fed a high-fat/high-sucrose diet. Our results showed that feeding this diet to miniature swine caused insulin resistance, increased lipid deposition in non-adipose tissue, such as in the heart, skeletal muscle, liver and pancreas, and also caused pancreatic beta cell damage. However, supplementing 1% NO-1886 (200 mg/kg per day) into the high-fat/high-sucrose diet decreased ectopic lipid deposition, improved insulin resistance, and alleviated the beta cell damage. These results suggest that improvement of lipid disorder, non-adipose tissue steatosis and insulin resistance may be very important for the protection of beta cell damage. Therefore, NO-1886 is potentially beneficial for the treatment of insulin-resistance syndrome.

2014 ◽  
Vol 10 ◽  
pp. 128-138 ◽  
Author(s):  
Shiwei Hu ◽  
Guanghua Xia ◽  
Jingfeng Wang ◽  
Yuming Wang ◽  
Zhaojie Li ◽  
...  

2016 ◽  
Vol 425 ◽  
pp. 123-132 ◽  
Author(s):  
Jinxue Ruan ◽  
Yuanyuan Zhang ◽  
Jing Yuan ◽  
Leilei Xin ◽  
Jihan Xia ◽  
...  

2016 ◽  
Vol 310 (8) ◽  
pp. E662-E675 ◽  
Author(s):  
Yu Yasutake ◽  
Akiko Mizokami ◽  
Tomoyo Kawakubo-Yasukochi ◽  
Sakura Chishaki ◽  
Ichiro Takahashi ◽  
...  

Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion, pancreatic β-cell proliferation, and adiponectin expression in adipocytes. Previously, we showed that long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level, improved glucose tolerance, and increased the fasting serum insulin concentration as well as pancreatic β-cell area in female mice fed a normal or high-fat, high-sucrose diet. We have now performed similar experiments with male mice and found that such GluOC administration induced glucose intolerance, insulin resistance, and adipocyte hypertrophy in those fed a high-fat, high-sucrose diet. In addition, GluOC increased the circulating concentration of testosterone and reduced that of adiponectin in such mice. These phenotypes were not observed in male mice fed a high-fat, high-sucrose diet after orchidectomy, but they were apparent in orchidectomized male mice or intact female mice that were fed such a diet and subjected to continuous testosterone supplementation. Our results thus reveal a sex difference in the effects of GluOC on glucose homeostasis. Given that oral administration of GluOC has been considered a potentially safe and convenient option for the treatment or prevention of metabolic disorders, this sex difference will need to be taken into account in further investigations.


2015 ◽  
Vol 21 (6) ◽  
pp. 827-833 ◽  
Author(s):  
Masao Yamasaki ◽  
Yusuke Matsuyama ◽  
Rintaro Hayasegawa ◽  
Kensaku Hamada ◽  
Kazuo Nishiyama ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142884 ◽  
Author(s):  
Li Li ◽  
Zhanzhao Zhao ◽  
Jihan Xia ◽  
Leilei Xin ◽  
Yaoxing Chen ◽  
...  

2020 ◽  
Author(s):  
Fei Huang ◽  
Ruozhi Zhao ◽  
Mi Xia ◽  
Garry Shen

Abstract Background Type 2 Diabetes (T2D) has become one of most common and harmful chronic diseases worldwide. T2D is characterized as insulin resistant and is often associated with unhealthy dietary habits. The present study assessed the effects of freeze-dried Saskatoon berry powder (SBp) and cyanidin-3-glucoside (C3G, an anthocyanin enriched in SBp) on metabolism, inflammatory markers and gut microbiota in high fat-high sucrose diet (HFHS) diet induced insulin resistant mice. Results Male C57 BL/6J mice received control, HFHS, HFHS + SBp (8.0 g/kg body weight/day) or HFHS + C3G (7.2 mg/kg/day, equal amount of C3G in 8.0 g/kg/day SBp) diet for 11 weeks. HFHS diet significantly increased the levels of glucose, cholesterol, triglycerides, insulin resistance and inflammatory mediators in plasma. The results of 16S rRNA gene sequencing demonstrated that HFHS diet increased the ratio of Bacteroidetes/Firmicutes (B/F) phylum bacteria and an elevated abundance of Muriculaceae family bacteria in the feces of mice. SBp or C3G supplementation attenuated HFHS diet-induced disorders in metabolism and inflammatory markers, and increased B/F ratio and Muriculaceae abundance in mouse gut compared to HFHS diet alone. The abundance of Muriculaceae in the gut microbiota negatively correlated with body weight, glucose, lipids, insulin resistance and inflammatory mediators in mice. The results of functional predication analysis suggest that HFHS diet upregulated the genes of gut bacteria involved in inflammation-related cellular processes, and inhibited bacteria involved in metabolism. SBp and C3G partially neutralized the alterations induced by HFHS diet in gut microbiota implicated in metabolism or inflammation. Conclusion The findings of the present study suggest that SBp is a potential prebiotic food mitigating Western diet-induced disorders in metabolism, inflammation and gut dysbiosis, and C3G possibly contributes to the beneficial effects of SBp.


Sign in / Sign up

Export Citation Format

Share Document