scholarly journals Characterization of the resistance to the anorectic and endocrine effects of leptin in obesity-prone and obesity-resistant rats fed a high-fat diet

2004 ◽  
Vol 183 (2) ◽  
pp. 289-298 ◽  
Author(s):  
G Tulipano ◽  
A V Vergoni ◽  
D Soldi ◽  
E E Muller ◽  
D Cocchi

Leptin produced by adipocytes controls body weight by restraining food intake and enhancing energy expenditure at the hypothalamic level. The diet-induced increase in fat mass is associated with the presence of elevated circulating leptin levels, suggesting the development of resistance to its anorectic effect. Rats, like humans, show different susceptibility to diet-induced obesity. The aim of the present study was to compare the degree of leptin resistance in obesity-prone (OP) vs obesity-resistant (OR) rats on a moderate high-fat (HF) diet and to establish if the effects of leptin on hypothalamo–pituitary endocrine functions were preserved. Starting from 6 weeks after birth, male Sprague–Dawley rats were fed on either a commercial HF diet (fat content: 20% of total calorie intake) or a standard pellet chow (CONT diet, fat content: 3%). After 12 weeks of diet, rats fed on HF diet were significantly heavier than rats fed on CONT diet. Animals fed on HF diet were ranked according to body weight; the two tails of the distribution were called OP and OR rats respectively. A polyethylene cannula was implanted into the right ventricle of rats 1 week before central leptin administration. After 12 weeks of HF feeding, both OR and OP rats were resistant to central leptin administration (10 μg, i.c.v.) (24 h calorie intake as a percent of vehicle-treated rats: CONT rats, 62 [50; 78]; OR, 93 [66; 118]; OP, 90 [70; 120] as medians and 95% confidence intervals (CIs) of six rats for each group). Conversely, after 32 weeks of diet both OR and OP rats were partially responsive to 10 μg leptin i.c.v. as compared with CONT rats (24 h calorie intake as a percent of vehicle-treated rats: CONT rats, 60 [50; 67]; OR, 65 [50; 80]; OP, 80 [60; 98] as medians and 95% CIs of six rats for each group); the decrease of food intake following 200 μg leptin i.p. administration was similar in all the three groups (calorie intake as a percent of vehicle-treated rats: 86 [80; 92] as median and 95% CI). The long-term intake of HF diet caused hyperleptinemia, hyperinsulinemia and higher plasma glucose levels in OP rats as compared with CONT rats. Plasma thyroxine (T4) was lower in all the rats fed the HF diet as compared with CONT. i.c.v. administration of leptin after 32 weeks of diet restored normal insulin levels in OP rats. Moreover, leptin increased plasma T4 concentration and strongly enhanced GH mRNA expression in the pituitary of OP as well as OR rats (180±10% vs vehicle-treated rats). In conclusion, long-term intake of HF diet induced a partial central resistance to the anorectic effect of leptin in both lean and fat animals; the neuroendocrine effects of leptin on T4 and GH were preserved.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Alireza Jahan-Mihan ◽  
Kea Schwarz ◽  
Leila Nynia ◽  
Tatyana Kimble

Abstract Objectives The objective of this study was to investigate the main and interactive effects of fat and sodium content of the diet on food intake, body weight and composition, glucose metabolism and blood pressure in male Wistar rats. Methods Male Wistar Rats (n = 48, initial body weight: 115.30 ± 1.73 g) were allocated into 4 groups (n = 12/group) and received one of the following diets: Normal sodium normal fat (NSNF), normal sodium high fat (NSHF), high sodium normal fat (HSNF), high sodium high fat (HSHF) diet for 12 weeks. Body weight (BW) and food intake (FI) were measured weekly. Short-term food intake (1, 2 and 12 hours food intake after 12 hours fasting) was measured at week 6. Body composition and organs’ weight were measured at week 12. Systolic (SBP) and diastolic (DBP) blood pressure, pulse and fasting blood glucose (FBG) were measured and oral glucose tolerance test (OGTT) was conducted at weeks 1, 4, 8 and 12. Results Regardless of sodium content, a greater FI (both gram and cal) was observed in rats fed normal fat diet compared with those fed high fat diet. Consistently, FI (g) at 1, 2 and 12 hours was higher in rats fed a normal fat diet. However, no difference in calorie intake was observed at any time point. Higher BW and fat (%) was observed in high fat diet groups. Moreover, greater kidneys’ weights was observed in high sodium diet groups. Fasting blood glucose was higher in rats fed a normal sodium diet compared with those fed a high sodium diet while the tAUC glucose response to glucose preload was higher in rats fed a high fat diet compared with those fed a normal fat diet which is consistent with higher body weight in high fat diet groups. Regardless of fat content of the diet, pulse was higher in rats fed a high sodium diet compared with those fed a normal sodium diet. No effect of either dietary sodium or fat content of the diet on SBP or DBP was observed. Conclusions Fat but not sodium content of the diet is a determining factor in regulation of FI and BW. Moreover, both fat and sodium content of the diet influence the glucose metabolism potentially through different mechanisms. While pulse is influenced by sodium content, the results of this study do not support the effect of sodium or fat content of the diet on either SBP or DBP. Funding Sources UNF, Brooks College of Health internal grant.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5654-5661 ◽  
Author(s):  
Ren Zhang ◽  
Harveen Dhillon ◽  
Huali Yin ◽  
Akihiko Yoshimura ◽  
Bradford B. Lowell ◽  
...  

Suppressor of cytokine signaling 3 (Socs3) has been identified as a mediator of central leptin resistance, but the identity of specific neurons in which Socs3 acts to suppress leptin signaling remains elusive. The ventromedial hypothalamus (VMH) was recently shown to be an important site for leptin action because deleting leptin receptor within VMH neurons causes obesity. To examine the role of VMH Socs3 in leptin resistance and energy homeostasis, we generated mice lacking Socs3 specifically in neurons positive for steroidogenic factor 1 (SF1), which is expressed abundantly in the VMH. These mice had increased phosphorylation of signal transducer and activator of transcription-3 in VMH neurons, suggesting improved leptin signaling, and consistently, food intake and weight-reducing effects of exogenous leptin were enhanced. Furthermore, on either chow or high-fat diets, these mice had reduced food intake. Unexpectedly, energy expenditure was reduced as well. Mice lacking Socs3 in SF1 neurons, despite no change in body weight, had improved glucose homeostasis and were partially protected from hyperglycemia and hyperinsulinemia induced by high-fat diets. These results suggest that Socs3 in SF1 neurons negatively regulates leptin signaling and plays important roles in mediating leptin sensitivity, glucose homeostasis, and energy expenditure.


Obesity ◽  
2014 ◽  
Vol 22 (10) ◽  
pp. 2147-2155 ◽  
Author(s):  
Yongbin Yang ◽  
Daniel L. Smith ◽  
Karen D. Keating ◽  
David B. Allison ◽  
Tim R. Nagy

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nur Fathiah Abdul Sani ◽  
Levin Kesu Belani ◽  
Chong Pui Sin ◽  
Siti Nor Amilah Abdul Rahman ◽  
Srijit Das ◽  
...  

Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P<0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P<0.05) in STZ-induced diabetic rats compared to diabetic control rats.


1988 ◽  
Vol 255 (6) ◽  
pp. R974-R981 ◽  
Author(s):  
K. Arase ◽  
J. S. Fisler ◽  
N. S. Shargill ◽  
D. A. York ◽  
G. A. Bray

We examined the effect of dietary fat on the response to 3-hydroxybutyrate (3-OHB) and insulin infused chronically into the third ventricle in three strains of rats with differing susceptibility to obesity induced by a high-fat diet: Osborne-Mendel rats are most susceptible; Sprague-Dawley-rats are intermediate; and S 5B/Pl rats are most resistant. Ten days after implantation of cannulas into the third ventricle, rats were fed either a low-fat diet or a high-fat diet for 14 days. On day 7, osmotic minipumps were attached to the ventricular cannulas. 3-OHB infusions (3.6 mumol/24 h) reduced food intake and body weight in Sprague-Dawley and Osborne-Mendel rats eating either diet. The dietary fat-resistant S 5B/Pl rats did not respond to the intracerebroventricular infusion of 3-OHB. The infusion of insulin (10 mU/24 h) lowered food intake and body weight in animals eating the low-fat (high-carbohydrate) diet but not in animals eating the high-fat diet. Diet profoundly affects the response to intracerebroventricular infusions of insulin but is without effect on the response to 3-OHB.


2013 ◽  
Vol 305 (9) ◽  
pp. R1076-R1084 ◽  
Author(s):  
Bo Sun ◽  
Nu-Chu Liang ◽  
Erin R. Ewald ◽  
Ryan H. Purcell ◽  
Gretha J. Boersma ◽  
...  

Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.


2009 ◽  
Vol 296 (4) ◽  
pp. E898-E903 ◽  
Author(s):  
Gabriel Paulino ◽  
Claire Barbier de la Serre ◽  
Trina A. Knotts ◽  
Pieter J. Oort ◽  
John W. Newman ◽  
...  

The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats. Expression of the type I cannabinoid receptor and growth hormone secretagogue receptor 1a in the nodose ganglia was increased in DIO-P compared with low-fat diet-fed controls or DIO-R rats. Shifts in the balance between orexigenic and anorexigenic signals within the vagal afferent pathway may influence food intake and body weight gain induced by high fat diets.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1313-1313
Author(s):  
Rola Hammoud ◽  
Emanuela Pannia ◽  
Ruslan Kubant ◽  
Rebecca Simonian ◽  
G Harvey Anderson

Abstract Objectives The prenatal period is a critical time for fetal development, programming the offspring's later-life health in response to the postnatal environment. We have shown that a high maternal choline diet programs long-term energy regulation leading to higher food intake and weight-gain in mature rat offspring fed a normal fat diet. However, the offspring's response to an obesogenic post-weaning diet has not been described. We aim to elucidate the interaction between the choline content of the gestational diet (GD) and fat content of the post-weaning diet (PWD) on male Wistar rat offspring's long-term metabolic phenotype. Methods Pregnant Wistar rats were fed an AIN-93G diet with either recommended choline (RC, 1g/kg diet choline bitartrate) or high choline (HC, 2.5-fold). Male pups were weaned to either a normal (10%) fat (RC-NF and HC-NF) or a high (45%) fat (RC-HF and HC-HF) diet for 17 weeks. Dependent measures were body weight, food intake, visceral adiposity, plasma glucoregulatory hormones and triglycerides, and plasma and hepatic free fatty acids (FFAs). Data were analyzed with 2-way ANOVA for main effects of GD and PWD and their interaction. Measures with significant interaction effects were followed by a Student's T-test comparing groups stratified by PWD. Results HC-HF offspring had lower body weight (7%, P &lt; 0.05), and visceral adiposity (15%, P &lt; 0.05), but no difference in food intake compared to RC-HF. HC-HF offspring had lower insulin (18%, P &lt; 0.05), HOMA-IR (24%, P &lt; 0.01), and plasma triglycerides (30%, P &lt; 0.05) but no difference in leptin. Total hepatic ω-3 FFAs (30%, P &lt; 0.05) were higher and ω-6/ω-3 (P &lt; 0.01) was lower in HC-HF compared to RC-HF, indicating an ameliorated metabolic phenotype in HC-HF offspring. In contrast, HC-NF offspring had higher food intake (8%, P &lt; 0.01) and body weight (6%, P &lt; 0.05) and no difference in adiposity compared to RC-NF. They also had higher plasma leptin adjusted for adiposity (22%, P &lt; 0.05) but not insulin or HOMA-IR compared to RC-NF. Hepatic C16:1n-7/C16:0 ratio was higher in HC-NF compared to RC-NF, suggestive of dysregulated lipid metabolism. Conclusions Gestational choline supplementation is associated with improved long-term metabolic regulation in male Wistar rat offspring fed a high fat post-weaning diet. Funding Sources CIHR-Institute of Nutrition, Metabolism, and Diabetes.


2016 ◽  
Vol 62 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Ivan Nikolaevich Tiurenkov ◽  
Denis Vladimirovich Kurkin ◽  
Dmitry Aleksandrovich Bakulin ◽  
Elena Vladimirovna Volotova ◽  
Mikhail Ayratovich Chafeev

The search for new drugs for the treatment of type 2 diabetes mellitus (T2DM) and obesity remains an urgent problem. Drugs with influence on incretin system are widely used in the treatment of T2DM and obesity, since in addition to the hypoglycemic action of their inherent hypophagic effects. With the discovery of GPR119 receptor, there is the opportunity to pharmacological stimulation of endogenous secretion of incretins. Compound ZB-16 is active GPR119 agonist with IC50=7 nM. Its activation leads to increased secretion of the major incretins (GLP-1 and GIP), which are able to influence glucose metabolism and feeding behavior.Aims — to study the effect of GPR 119 receptor agonist compounds ZB-16 on blood glucose, body weight and food intake in rats with obesity.Material and methods.Male rats with initial weight 390—400 g were fed with high-carbohydrate and high-fat diet. During the next four weeks the animals orally received ZB-16 (1 mg/kg) and metformin (400 mg/kg) and then we assessed the level of water and food consumption, blood glucose levels, and performed oral glucose tolerance test (OGTT).Results.Compound ZB-16 and metformin reduced fasting blood glucose levels and weight of experimental animals, while the control rats gained weight. GPR119 agonist is more pronounced than metformin reduced the area under the curve «glucose of concentration—time» during the OGTT.Conclusions.Novel GPR119 agonist — ZB-16 is comparable to metformin in hypoglycemic and anorexigenic effect in animals with obesity caused high-carbohydrate and high-fat diet.


2011 ◽  
Vol 106 (3) ◽  
pp. 390-397 ◽  
Author(s):  
Alexandra Shapiro ◽  
Nihal Tümer ◽  
Yongxin Gao ◽  
Kit-Yan Cheng ◽  
Philip J. Scarpace

Chronic consumption of a Western-type diet, containing both elevated sugar and fat, results in leptin resistance. We hypothesised that fructose, as part of the sugar component of Western-type diets, is one causative ingredient in the development of leptin resistance and that removal of this component will prevent leptin resistance despite high fat (HF) content. We fed rats a sugar-free (SF), 30 % HF (SF/HF) diet or a 40 % high-fructose (HFr), 30 % HF (HFr/HF) diet for 134 d. The HFr/HF diet resulted in impaired anorexic and body-weight responses to both peripherally (0·6 mg/kg, assessed on day 65 of the diet) and centrally (1·5 μg/d, assessed on days 129–134) administered leptin, whereas SF/HF-fed rats were fully leptin responsive. At day 70, half the HFr/HF-fed animals were switched to the SF/HF diet, reversing the leptin resistance (assessed 18 d after the diet switch). The HFr/HF diet elevated serum leptin and reduced adiponectin, and levels were restored abruptly at day 3 after switching to the SF/HF diet. These data demonstrate that a diet containing both HFr and fat leads to leptin resistance, while an isoenergetic SF/HF diet does not. Moreover, removal of fructose from this diet reverses the leptin resistance and the elevated leptin, suggesting a cause-and-effect relationship. These data suggest that fructose is the bioactive component of a HF/high-sugar diet that is essential for the induction of leptin resistance.


Sign in / Sign up

Export Citation Format

Share Document