SYMPOSIUM. FIXED OFFSHORE STRUCTURES: THE NEW CODE OF PRACTICE BS 6235 . ICE, LONDON 15 NOVEMBER 1982. GENERAL; ENVIRONMENTAL DATA; LOADS AND DYNAMIC RESPONSE; MISCELLANEOUS.

1983 ◽  
Vol 74 (3) ◽  
pp. 571-573
Author(s):  
MRC BURY ◽  
GL HARGREAVES ◽  
JR PETRIE ◽  
RJ SHEARMAN ◽  
PF TAYLOR ◽  
...  
Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Gruntovedenie ◽  
2021 ◽  
Vol 1 (16) ◽  
pp. 16-52
Author(s):  
E.A. Voznesensky ◽  
◽  
A.S. Loktev ◽  
M.S. Nikitin ◽  
◽  
...  

Issues of laboratory soil studies standardization in offshore geotechnical survey are discussed in connection with the end of expertise of two new regulative documents – new edition of the Code of practice and Russian national standard developed on the basis of international ISO standard. Since these documents of different level belong also to different categories (geotechnical survey and oil and gas industry), the authors analyze their interrelation and consistency, from one hand, and the preparedness of Russian soil testing practice to implementation of the new standard which results from harmonization with international ones, from the other. Complete section of the standard draft related to soil laboratory testing is presented, preceded by commentary on some important issues regarding the implementation of its specific methodic statements. It is concluded that the new national GOST draft «Petroleum and natural gas industries. Specific requirements for offshore structures. Marine soil investigations» developed on ISO basis will be a useful document supported in general by Russian normative base but expanding a possible range of voluntary methods into well time-tested foreign approaches. This documents can be considered to be a toolkit annex to the Code of practice describing testing approaches beyond the scope of typical tasks


Author(s):  
Bruce L. Hutchison

This paper presents highlights of the report of the 16th International Ship and Offshore Structure Congress (ISSC) I.1 Environment Committee presented in August 2006 in Southampton, UK. Subjects addressed include notable accomplishments in the study of the marine environment pertinent to the design and operation of ships and offshore structures. These include advances in the past three years with respect to sensing, modeling and analysis of environmental data, discussion of rogue waves, climate change and parametric roll, and recommendations for further research.


Author(s):  
B. Asgarian ◽  
A. Mohebbinejad ◽  
R. H. Soltani

Dynamic response of offshore platforms subjected to wave and current is of fundamental importance in analysis. The first step in dynamic analysis is computing dynamic characteristics of the structure. Because of pile-soil-structure and fluid-structure interactive effects in the dynamic behavior, the model is very complex. In this paper a simplified model for dynamic response of jacket-type offshore structures subjected to wave loading is used. Since wave loads on offshore platforms vary with time, they produce dynamic effects on structures. In the model used in this paper, all of the structural elements are modeled as vertical equivalent cylinders that are in the direction of the wave crest. In the simplified model, the degrees of freedom are considered at the seabed, jacket horizontal elevations and topside center of gravity. The stiffness properties of the model are computed considering the stiffnesses of the vertical bracings, legs and piles. The structural mass is considered as lumped nodal masses at horizontal elevations and topside center of gravity. The hydrodynamic added mass in addition to the structural masses was modeled at jacket horizontal elevations. In the simplified model, for computing wave loading, the projected areas of all members in the direction of the wave crest are considered. For the wave loading calculation, Morison equation is considered. The fluid velocities are calculated for the submerged portions of the structures using a computer program developed for this purpose. In this program both Airy and Stokes wave theories can be used. This model can be used to assess dynamic properties and responses of jacket type offshore structures. The model is used to assess the response of three jacket-type offshore platforms in Persian Gulf subjected to loadings due to several waves. The results in terms of dynamic characteristics and responses were compared with the more accurate analysis results using SACS software. The results are in a good agreement with the SACS analysis outputs, i.e. structural periods, mode shapes and dynamic response.


Author(s):  
Pau Trubat ◽  
Jesús Bairan ◽  
Adrián Yagüe ◽  
Climent Molins

Abstract WindCrete is an offshore concrete spar type platform for Wind Turbines developed at Universitat Politècnica de Catalunya – BarcelonaTech. The main characteristics of the platform are its monolithic configuration and the use of concrete as main material. The monolithic nature allows avoiding joints between the substructure and the tower increasing the service life of the structure. The use of concrete increases the resistance when exposed to an offshore environment but requires ensuring a full compression state along the structure to avoid cracking. Thus, the platform is post-tensioned by longitudinal tendons along its length. Adequate fatigue design is a key factor to ensure the reliability of offshore structures. Floating Offshore Wind Turbines are subjected to cyclic phenomena coming from waves, wind, rotor-induced vibrations and structural vibrations. These loads have to be considered in order to assess the fatigue life of offshore structures. Furthermore, pre-stressed concrete adds an internal load such that it avoids the presence of tension stresses at any given section, which has a positive influence on the fatigue response of the structure by increasing its fatigue resistance. An excess of compression can, however, also induce an adverse effect on the fatigue resistance of the concrete. In order to study the fatigue behaviour of WindCrete when fitted with a 5MW Wind Turbine, a Fatigue Limit State verification is performed according to the DNVGL-ST-0437 for load cases definition and FIB Model Code (2010) for fatigue structural verification. The location chosen to install WindCrete is the Gulf de Lion, at the west of the Mediteranian Sea off the coast of Catalunya with a mean wind speed above 9 m/s. The metocean conditions for design purpose are presented, which are obtained from available environmental data. A total of 458 simulation cases are performed using the NREL FAST software assuming wind and wave co-directionally, and quasi-static mooring response for Parked and Power-Production operational modes. Assuming an elastic response of the tower, the internal stresses at the tower base are obtained for all the simulations. Then, a fatigue analysis is performed at the tower base through a cumulative damage approach based on the Palmgren-Miner rule. The analysis accounted for the multiaxial stresses produced by the combination of axial, bending and tangential forces. The S-N material curves were defined according to the Model Code 2010 method, which accounts for the effect of the stress range as well as the average stress.


Sign in / Sign up

Export Citation Format

Share Document