scholarly journals A numerical investigation of the cracking behaviour of reinforced-concrete tie elements

2020 ◽  
Vol 72 (3) ◽  
pp. 109-121 ◽  
Author(s):  
Reignard Tan ◽  
Max A. N. Hendriks ◽  
Mette Geiker ◽  
Terje Kanstad
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Aylin Ece Kayabekir

The usage of computer software in civil engineering has expanded in last decades. Many general-purpose and special-purpose commercial programs perform a very important function, especially at the design stage. In this study, a computer program is introduced for the analysis and design of the axial symmetric cylindrical wall considering the dome effects. Analysis processes are carried out according to Flexibility theory with long wall assumption and during the reinforced concrete (RC) design of the wall, ACI 318-Building code requirements for structural concrete are considered. In numerical investigation, the effects of the dome properties (thickness and height) on the analysis and design of the wall are investigated by performing a totally 72 case analyzes. These cases include different support condition at bottom of the wall, wall heights, dome thicknesses and heights. According to analysis results, it is concluded that effects of dome thickness and heights on the wall on the wall are very limited.


2017 ◽  
Vol 15 (02) ◽  
pp. 1850001 ◽  
Author(s):  
George Markou ◽  
Mohammad AlHamaydeh

This paper presents the numerical investigation of nine Glass Fiber-Reinforced Polymer (GFRP) concrete deep beams through the use of numerically-efficient 20-noded hexahedral elements. Cracking is taken into account by means of the smeared crack approach and the bars are simulated as embedded rod elements. The developed numerical models are validated against published experimental results. The validation beams spanned a practical range of varying design parameters; namely, shear span-to-depth ratio, concrete specified compressive strength and flexural reinforcement ratio. The motivation for this research is to accurately yet efficiently capture the mechanical behavior of the GFRP-reinforced concrete deep beams. The presented numerical investigation demonstrated close correlations of the force–deformation relationships that are numerically predicted and their experimental counterparts. Moreover, the numerically predicted modes of failure are also found to be conformal to those observed experimentally. The proposed modeling approach that overcame previous computational limitations has further demonstrated its capability to accurately model larger and deeper beams in a computationally efficient manner. The validated modeling technique can then be efficiently used to perform extensive parametric investigations related to behavior of this type of structural members. The modeling method presented in this work paves the way for further parametric investigations of the mechanical behavior of GFRP-reinforced deep beams without shear reinforcement that will serve as the base for proposing new design guidelines. As a deeper understanding of the behavior and the effect of the design parameters is attained, more economical and safer designs will emerge.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 293
Author(s):  
Alinda Dey ◽  
Domas Valiukas ◽  
Ronaldas Jakubovskis ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.


Sign in / Sign up

Export Citation Format

Share Document