scholarly journals Critical Aspects of Viral Vectors for Gene Transfer into the Kidney

2000 ◽  
Vol 11 (suppl 2) ◽  
pp. S149-S153
Author(s):  
DAVID FAVRE ◽  
NICOLAS FERRY ◽  
PHILIPPE MOULLIER

Abstract.Viral vectors have been usedin vitroandin vivofor more than a decade, with some significant results in specific situations,e.g., when recombinant adeno-associated virus is used for the long-term transduction of skeletal muscle in coagulation factor IX-deficient patients. However, the kidney has been quite difficult to transduce with any viral vector currently available. When viral transduction occurs, it is often heterogeneous, transient, and eventually associated with immune and toxic side effects. However, recombinant adeno-associated virus and lentiviral vectors remain to be fully evaluated in the kidney; the former is small enough to be filtered through the glomerular basement membrane. This may be critical, because glomerular filtration is required for DNA complex-mediated transduction of tubular cells. An alternative toin siturenal gene transfer is secretion of a therapeutic protein from a distant site, such as skeletal muscle. Several examples provide evidence that this could be a clinically relevant approach. It also may allow accurate determination of the pathophysiologic mechanisms involved in the establishment and maintenance of experimental glomerulonephritis.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1477-1477
Author(s):  
Courtney T Connolly ◽  
Armida Faella ◽  
Timothy C. Nichols ◽  
Katherine A. High ◽  
Valder R. Arruda ◽  
...  

Abstract Post-translational modifications of coagulation factors in the liver are essential for function. The vitamin K dependent coagulation proteins (VKCPs) require vitamin K to undergo gamma carboxylation of the glutamic residues in their Gla domain by gamma-glutamyl carboxylase [GGCX]. The vitamin K is then recycled by the action of epoxide reductase [VKORc1] and/or quinone reductase [NQO1]. The hemostatic importance of the vitamin K “cycle” is evidenced by patients who may suffer bleeding complications when anticoagulated with warfarin, which targets the vitamin K cycle. Moreover, the ability of a variety of VKCPs to secrete a biologically active product depends on the removal of their propeptide by the action of the intracellular endoprotease furin [FURIN gene]. Previous in vitro work on recombinant coagulation Factor IX, which is used for hemophilia B treatment, has connected these two processing steps by showing that endogenous VKORc1 as well as FURIN can be limiting factors in high-yield expression systems. In vivo, skeletal muscle (in contrast to liver) has been utilized to express low levels of coagulation Factor IX in the first hemophilia B gene therapy clinical trial. However, our experiments in mice demonstrated that the specific activity of muscle-synthesized Factor IX via gene transfer decreased at the high levels of FIX expression by a limited muscle area (Schuettrumpf J. et al., Blood 2005). These results suggest that in vitro and in vivo expression of biologically-active VKCPs outside the liver may be limited by the host cell post-translational modification machinery. Here, we performed a systematic study to determine the expression profiles of the vitamin K cycle and furin endoprotease genes in human liver and muscle, compared to the mouse. We also established these profiles in two hemophilic dogs, given the extensive use of this animal model in gene-based hemophilia therapies. RNA from liver and skeletal muscle was used as a template for reverse transcription and the subsequent relative quantification of the GGCX, VKORc1, NQO1, and FURIN genes by qPCR in each tissue using a housekeeping reporter gene. For this, a variety of housekeeping genes were investigated in all three species to identify ones with similar transcript levels in both liver and muscle tissue. We identified the housekeeping genes HPRT1, beta actin, and 18s rRNA as equivalently expressed in the liver and skeletal muscle of human, mouse, and dog, respectively. The relative mRNA transcript quantification of the vitamin K cycle genes in humans showed that the transcript levels of GGCX were similar in liver and muscle. In contrast, both VKORc1 and NQO1 were under-expressed in muscle vs. liver (69.5 ± 4.9% and 67.8 ± 12.5%, respectively, P<0.01). In the mouse, VKORc1 transcript levels in the muscle were reduced to 73.8 ± 9.9% vs. liver (P<0.05), while GGCX and NQO1 exhibited similar transcript levels in both tissues. In the dog, we observed a dramatic reduction in VKORc1 and GGCX transcript levels in the muscle vs. liver (11.8 ± 4.2% and 29.5 ± 15.8%, respectively, P<0.01). Surprisingly, NQO1 transcript levels were 253.8 ± 156.7% higher in muscle than liver (P<0.05). Lastly, in all three species tested, transcript levels for FURIN were similar in both muscle and liver. Our results indicate that VKORc1, a key enzyme in the vitamin K cycle, is consistently under-expressed in the skeletal muscle of humans as well as in mice and hemophilic dogs. In contrast, FURIN transcripts are similarly abundant in the liver and muscle of all three species tested. These suggest that the vitamin K cycle but not propeptide processing by furin can be a limiting factor in the secretion of biologically active muscle-expressed VKCPs. As a result, our observations provide (1) a plausible explanation for the inverse relationship between specific activity and Factor IX expression levels in mice following Factor IX gene transfer, and (2) further support for the mouse and dog as useful models for therapies that depend on the muscle-derived expression of VKCPs. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 57 (8) ◽  
pp. 1326-1333 ◽  
Author(s):  
I. Hellgren* ◽  
V. Drvota ◽  
R. Pieper ◽  
S. Enoksson ◽  
P. Blomberg ◽  
...  

2005 ◽  
Vol 79 (24) ◽  
pp. 15238-15245 ◽  
Author(s):  
Alejandra E. Arbetman ◽  
Michael Lochrie ◽  
Shangzhen Zhou ◽  
Jennifer Wellman ◽  
Ciaran Scallan ◽  
...  

ABSTRACT Preexisting humoral immunity to adeno-associated virus (AAV) vectors may limit their clinical utility in gene delivery. We describe a novel caprine AAV (AAV-Go.1) capsid with unique biological properties. AAV-Go.1 capsid was cloned from goat-derived adenovirus preparations. Surprisingly, AAV-Go.1 capsid was 94% identical to the human AAV-5, with differences predicted to be largely on the surface and on or under the spike-like protrusions. In an in vitro neutralization assay using human immunoglobulin G (IgG) (intravenous immune globulin [IVIG]), AAV-Go.1 had higher resistance than AAV-5 (100-fold) and resistance similar to that of AAV-4 or AAV-8. In an in vivo model, SCID mice were pretreated with IVIG to generate normal human IgG plasma levels prior to the administration of AAV human factor IX vectors. Protein expression after intramuscular administration of AAV-Go.1 was unaffected in IVIG-pretreated mice, while it was reduced 5- and 10-fold after administration of AAV-1 and AAV-8, respectively. In contrast, protein expression after intravenous administration of AAV-Go.1 was reduced 7.1-fold, similar to the 3.8-fold reduction observed after AAV-8administration in IVIG-pretreated mice, and protein expression was essentially extinguished after AAV-2 administration in mice pretreated with much less IVIG (15-fold). AAV-Go.1 vectors also demonstrated a marked tropism for lung when administered intravenously in SCID mice. The pulmonary tropism and high neutralization resistance to human preexisting antibodies suggest novel therapeutic uses for AAV-Go.1 vectors, including targeting diseases such as cystic fibrosis. Nonprimate sources of AAVs may be useful to identify additional capsids with distinct tropisms and high resistance to neutralization by human preexisting antibodies.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1132-1140 ◽  
Author(s):  
Ou Cao ◽  
Eric Dobrzynski ◽  
Lixin Wang ◽  
Sushrusha Nayak ◽  
Bethany Mingle ◽  
...  

Abstract Gene replacement therapy is complicated by the risk of an immune response against the therapeutic transgene product, which in part is determined by the route of vector administration. Our previous studies demonstrated induction of immune tolerance to coagulation factor IX (FIX) by hepatic adeno-associated viral (AAV) gene transfer. Using a regulatory T-cell (Treg)–deficient model (Rag-2−/− mice transgenic for ovalbumin-specific T-cell receptor DO11.10), we provide first definitive evidence for induction of transgene product-specific CD4+CD25+ Tregs by in vivo gene transfer. Hepatic gene transfer–induced Tregs express FoxP3, GITR, and CTLA4, and suppress CD4+CD25− T cells. Tregs are detected as early as 2 weeks after gene transfer, and increase in frequency in thymus and secondary lymphoid organs during the following 2 months. Similarly, adoptive lymphocyte transfers from mice tolerized to human FIX by hepatic AAV gene transfer indicate induction of CD4+CD25+GITR+ that suppresses antibody formation to FIX. Moreover, in vivo depletion of CD4+CD25+ Tregs leads to antibody formation to the FIX transgene product after hepatic gene transfer, which strongly suggests that these regulatory cells are required for tolerance induction. Our study reveals a crucial role of CD4+CD25+ Tregs in preventing immune responses to the transgene product in gene transfer.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3924-3932 ◽  
Author(s):  
Lingfei Xu ◽  
Cuihua Gao ◽  
Mark S. Sands ◽  
Shi-Rong Cai ◽  
Timothy C. Nichols ◽  
...  

AbstractHemophilia B is a bleeding disorder resulting from factor IX (FIX) deficiency that might be treated with gene therapy. Neonatal delivery would correct the disease sooner than would transfer into adults, and could reduce immunological responses. Neonatal mice were injected intravenously with a Moloney murine leukemia virus–based retroviral vector (RV) expressing canine FIX (cFIX). They achieved 150% to 280% of normal cFIX antigen levels in plasma (100% is 5 μg/mL), which was functional in vitro and in vivo. Three newborn hemophilia B dogs that were injected intravenously with RV achieved 12% to 36% of normal cFIX antigen levels, which improved coagulation tests. Only one mild bleed has occurred during 14 total months of evaluation. This is the first demonstration of prolonged expression after neonatal gene therapy for hemophilia B in mice or dogs. Most animals failed to make antibodies to cFIX, demonstrating that neonatal gene transfer may induce tolerance. Although hepatocytes from newborns replicate, those from adults do not. Adult mice therefore received hepatocyte growth factor to induce hepatocyte replication prior to intravenous injection of RV. This resulted in expression of 35% of normal cFIX antigen levels for 11 months, although all mice produced anti-cFIX antibodies. This is the first demonstration that high levels of FIX activity can be achieved with an RV in adults without a partial hepatectomy to induce hepatocyte replication. We conclude that RV-mediated hepatic gene therapy is effective for treating hemophilia B in mice and dogs, although the immune system may complicate gene transfer in adults.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 480-486 ◽  
Author(s):  
Ou Cao ◽  
Elina Armstrong ◽  
Alexander Schlachterman ◽  
Lixin Wang ◽  
David K. Okita ◽  
...  

Formation of inhibitory antibodies is a serious complication of protein or gene replacement therapy for hemophilias, congenital X-linked bleeding disorders. In hemophilia B (coagulation factor IX [F.IX] deficiency), lack of endogenous F.IX antigen expression and other genetic factors may increase the risk of antibody formation to functional F.IX. Here, we developed a protocol for reducing inhibitor formation in gene therapy by prior mucosal (intranasal) administration of a peptide representing a human F.IX-specific CD4+ T-cell epitope in hemophilia B mice. C3H/HeJ mice with a F.IX gene deletion produced inhibitory IgG to human F.IX after hepatic gene transfer with an adeno-associated viral vector. These animals subsequently lost systemic F.IX expression. In contrast, repeated intranasal administration of the specific peptide resulted in reduced inhibitor formation, sustained circulating F.IX levels, and sustained partial correction of coagulation following hepatic gene transfer. This was achieved through immune deviation to a T-helper–cell response with increased IL-10 and TGF-β production and activation of regulatory CD4+CD25+ T cells.


2000 ◽  
Vol 74 (1) ◽  
pp. 535-540 ◽  
Author(s):  
Robert W. Walters ◽  
Dongsheng Duan ◽  
John F. Engelhardt ◽  
Michael J. Welsh

ABSTRACT Adeno-associated virus (AAV) is inefficient at infecting differentiated airway epithelia because of a lack of receptors at the apical surface. We hypothesized that incorporation of AAV in a calcium phosphate coprecipitate would circumvent this barrier. Interestingly, coprecipitation of AAV type 2 improved gene transfer to differentiated human airway epithelia in vitro and to the mouse lung in vivo. These results suggest that delivery of AAV as a CaPicoprecipitate may significantly enhance its utility for gene transfer to the airway epithelia in vivo.


Sign in / Sign up

Export Citation Format

Share Document