scholarly journals The effect of geothermal soil warming on the production of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitric oxide (NO) and nitrous acid (HONO) from forest soil in southern Iceland

2018 ◽  
Vol 31 ◽  
pp. 11-22
Author(s):  
Marja Maljanen ◽  
Hem Raj Bhattarai ◽  
Christina Biasi ◽  
Bjarni D Sigurdsson
2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2013 ◽  
Vol 10 (11) ◽  
pp. 7623-7630 ◽  
Author(s):  
R. R. E. Artz ◽  
S. J. Chapman ◽  
M. Saunders ◽  
C. D. Evans ◽  
R. B. Matthews

Abstract. Yamulki and co-authors address in their recent publication the important issue of net emissions of greenhouse gases (GHGs) from peatlands where land use conversion has taken place. In their case, they studied conversion to forestry versus peatland restoration after a first rotation of plantation forestry. They monitored soil-derived fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) using opaque chamber measurements on planted and unplanted control treatments (with or without drainage), and an unplanted plot within a restored (felled) block on former lowland raised bog. They propose that their measurements of greenhouse gas (GHG) emissions at these sites suggest that the total net GHG emissions, in 100 yr carbon dioxide equivalents, of the restored peat bog would be higher than that of the peat bog with trees. We believe there are a number of issues with the measurement, calculation and comparison of these greenhouse budgets that may invalidate this conclusion.


2008 ◽  
Vol 25 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
C. Paton-Walsh ◽  
R. L. Mittermeier ◽  
W. Bell ◽  
H. Fast ◽  
N. B. Jones ◽  
...  

Abstract The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organized by the Network for the Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3%, and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers.


2005 ◽  
Vol 9 (23) ◽  
pp. 1-28 ◽  
Author(s):  
Michael Keller ◽  
Ruth Varner ◽  
Jadson D. Dias ◽  
Hudson Silva ◽  
Patrick Crill ◽  
...  

Abstract Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam Ultisol) over two years (2000–01) in both undisturbed forest and forest recently logged using reduced impact forest management in the Tapajos National Forest, near Santarem, Para, Brazil. In undisturbed forest, annual soil–atmosphere fluxes of N2O (mean ± standard error) were 7.9 ± 0.7 and 7.0 ± 0.6 ng N cm−2 h−1 for the Oxisol and 1.7 ± 0.1 and 1.6 ± 0.3 ng N cm−2 h−1 for the Ultisol for 2000 and 2001, respectively. The annual fluxes of NO from undisturbed forest soil in 2001 were 9.0 ± 2.8 ng N cm−2 h−1 for the Oxisol and 8.8 ± 5.0 ng N cm−2 h−1 for the Ultisol. Consumption of CH4 from the atmosphere dominated over production on undisturbed forest soils. Fluxes averaged −0.3 ± 0.2 and −0.1 ± 0.9 mg CH4 m−2 day−1 on the Oxisol and −1.0 ± 0.2 and −0.9 ± 0.3 mg CH4 m−2 day−1 on the Ultisol for years 2000 and 2001. For CO2 in 2001, the annual fluxes averaged 3.6 ± 0.4 μmol m−2 s−1 on the Oxisol and 4.9 ± 1.1 μmol m−2 s−1 on the Ultisol. We measured fluxes over one year each from two recently logged forests on the Oxisol in 2000 and on the Ultisol in 2001. Sampling in logged areas was stratified from greatest to least ground disturbance covering log decks, skid trails, tree-fall gaps, and forest matrix. Areas of strong soil compaction, especially the skid trails and logging decks, were prone to significantly greater emissions of N2O, NO, and especially CH4. In the case of CH4, estimated annual emissions from decks reached extremely high rates of 531 ± 419 and 98 ± 41 mg CH4 m−2 day−1, for Oxisol and Ultisol sites, respectively, comparable to wetland emissions in the region. We calculated excess fluxes from logged areas by subtraction of a background forest matrix or undisturbed forest flux and adjusted these fluxes for the proportional area of ground disturbance. Our calculations suggest that selective logging increases emissions of N2O and NO from 30% to 350% depending upon conditions. While undisturbed forest was a CH4 sink, logged forest tended to emit methane at moderate rates. Soil–atmosphere CO2 fluxes were only slightly affected by logging. The regional effects of logging cannot be simply extrapolated based upon one site. We studied sites where reduced impact harvest management was used while in typical conventional logging ground damage is twice as great. Even so, our results indicate that for N2O, NO, and CH4, logging disturbance may be as important for regional budgets of these gases as other extensive land-use changes in the Amazon such as the conversion of forest to cattle pasture.


2019 ◽  
pp. 4-8
Author(s):  
Андрій Миколайович Радченко ◽  
Микола Іванович Радченко ◽  
Ян Зонмін ◽  
Сергій Анатолійович Кантор ◽  
Богдан Сергійович Портной

The operation of gas turbine unites significantly depends on the ambient air temperature at the inlet, and the higher it is, the greater the specific fuel consumption is spent for the production of a unit capacity (mechanical/electrical energy), and, accordingly, the more harmful substances are removed to the atmosphere with exhaust gases. To reduce the negative impact of unproductive fuel consumption during the operation of gas turbine units at elevated ambient temperatures, the inlet air cooling is applied. The paper studies the ecological efficiency of gas turbine unite inlet air cooling, taking into account the variable climatic operation conditions for regions with different climatic conditions over a period of five years (2014-2018): temperate climate of Ukraine (on the example of cities Sumy and Ternopol) and the subtropical climate of the PRC (cities Beijing and Nanjing). The annual reduction in emissions of carbon dioxide CO2 and nitric oxide NOX was chosen as indicators for assessing the environmental effect of air cooling. It has been shown that deeper cooling gas turbine unite inlet air to 7...10 °C provides almost a half to two times greater reduction in specific fuel consumption, respectively, and harmful emissions compared with traditional cooling to 15 °C by the most widespread absorption lithium-bromide chillers, and for the temperate climate of Ukraine the relative effect is much greater than for the subtropical climatic conditions of the PRC. Reducing carbon dioxide CO2 over five years for the PRC climate when cooling air to 10 °C is approximately more than 500 t, and for Ukraine – more than 240 t, and NOX nitric oxide – about 3.5 t for China and 1.6 t for Ukraine, while with traditional cooling to 15 °C: more than 300 t for China, and for Ukraine about 120 t, and nitric oxide NOX – about 2 t for China and 0.7 t for Ukraine. Based on the results of a rough assessment of the environmental effect of cooling the ambient air at the inlet of gas turbine units, in the temperate climate of Ukraine, deep cooling of the air is especially advisable, which provides almost twice the effect compared with traditional cooling to 15 °C.


2020 ◽  
Vol 56 (7) ◽  
pp. 1077-1090 ◽  
Author(s):  
Ling Song ◽  
Julia Drewer ◽  
Bo Zhu ◽  
Minghua Zhou ◽  
Nicholas Cowan ◽  
...  

Abstract Agricultural and forest soils with low organic C content and high alkalinity were studied over 17 days to investigate the potential response of the atmospheric pollutant nitric oxide (NO) and the greenhouse gas nitrous oxide (N2O) on (1) increased N deposition rates to forest soil; (2) different fertilizer types to agricultural soil and (3) a simulated rain event to forest and agricultural soils. Cumulative forest soil NO emissions (148–350 ng NO-N g−1) were ~ 4 times larger than N2O emissions (37–69 ng N2O-N g−1). Contrary, agricultural soil NO emissions (21–376 ng NO-N g−1) were ~ 16 times smaller than N2O emissions (45–8491 ng N2O-N g−1). Increasing N deposition rates 10 fold to 30 kg N ha−1 yr−1, doubled soil NO emissions and NO3− concentrations. As such high N deposition rates are not atypical in China, more attention should be paid on forest soil NO research. Comparing the fertilizers urea, ammonium nitrate, and urea coated with the urease inhibitor ‘Agrotain®,’ demonstrated that the inhibitor significantly reduced NO and N2O emissions. This is an unintended, not well-known benefit, because the primary function of Agrotain® is to reduce emissions of the atmospheric pollutant ammonia. Simulating a climate change event, a large rainfall after drought, increased soil NO and N2O emissions from both agricultural and forest soils. Such pulses of emissions can contribute significantly to annual NO and N2O emissions, but currently do not receive adequate attention amongst the measurement and modeling communities.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 787 ◽  
Author(s):  
Enver Çavuşoğlu ◽  
Jean-Loup Rault ◽  
Richard Gates ◽  
Donald C. Lay

The swine industry is often forced to euthanize pigs in the first few weeks of life due to injuries, hernias, or unthriftiness. The majority of pigs are euthanized using carbon dioxide (CO2) gas asphyxiation but concerns as to the humaneness of CO2 are increasing. This study compared the euthanasia of weaned pigs using N2O (N2O; n = 9) or CO2 (n = 9), at 50% and 25% min−1 exchange rate, respectively. In addition, we administered an analgesic prior to euthanasia with CO2 (CO2B) exposure as a third treatment (n = 9) to elucidate behaviors indicative of pain. Pigs in the CO2 and N2O treatments lost posture at similar times (latency of 145.0 ± 17.3 and 162.6 ± 7.0 s respectively, p > 0.10), while the CO2B treatment pigs lost posture the soonest (101.2 ± 4.7 s, p < 0.01). The pigs in the CO2B treatment made more escape attempts than the CO2 or N2O pigs (16.4 ± 4.2, 4.7 ± 1.6, 0.3 ± 0.2, respectively; p < 0.0004). However, pigs in N2O squealed more often than either the CO2 or CO2B pigs (9.0 ± 1.6, 2.8 ± 1.2, 1.3 ± 0.6, respectively, p < 0.001). Given the similar time to loss of posture and shorter time displaying open mouth breathing, N2O may cause less stress to pigs; however, the greater number of squeals performed by these pigs suggests the opposite. It was not apparent that any behavior measured was indicative of pain. In conclusion, N2O applied at a 50% min−1 flow rate can be an alternative to CO2 for pig euthanasia.


Sign in / Sign up

Export Citation Format

Share Document