scholarly journals An Intercomparison of Ground-Based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada

2008 ◽  
Vol 25 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
C. Paton-Walsh ◽  
R. L. Mittermeier ◽  
W. Bell ◽  
H. Fast ◽  
N. B. Jones ◽  
...  

Abstract The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organized by the Network for the Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3%, and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers.

2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2013 ◽  
Vol 10 (11) ◽  
pp. 7623-7630 ◽  
Author(s):  
R. R. E. Artz ◽  
S. J. Chapman ◽  
M. Saunders ◽  
C. D. Evans ◽  
R. B. Matthews

Abstract. Yamulki and co-authors address in their recent publication the important issue of net emissions of greenhouse gases (GHGs) from peatlands where land use conversion has taken place. In their case, they studied conversion to forestry versus peatland restoration after a first rotation of plantation forestry. They monitored soil-derived fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) using opaque chamber measurements on planted and unplanted control treatments (with or without drainage), and an unplanted plot within a restored (felled) block on former lowland raised bog. They propose that their measurements of greenhouse gas (GHG) emissions at these sites suggest that the total net GHG emissions, in 100 yr carbon dioxide equivalents, of the restored peat bog would be higher than that of the peat bog with trees. We believe there are a number of issues with the measurement, calculation and comparison of these greenhouse budgets that may invalidate this conclusion.


2021 ◽  
Author(s):  
Sam Barker ◽  
Phil Hackett ◽  
Will Price ◽  
Kathrin Rosenthal

<p>Biogenic gases carbon dioxide, methane and nitrous oxide are regularly analysed in many environments to understand elemental cycling and processes through the ecosphere. They are also of interest to atmospheric chemists for their role in climate change.  The Isoprime Tracegas has been key to a large amount of studies providing data on the isotopes of these key dynamic molecules. We shall review some of the notable publications and modifications in the field of atmospheric gas monitoring.</p><p>The development of the isoprime precisION mass spectrometer has permitted a new generation of control and automation of the mass spectrometer and integrated peripherals. This has greatly improved the accessibility and versatility of the instruments as a whole.</p><p>Taking advantage of the inherent benefits of the isoprime precisION the iso FLOW GHG has been developed for high performance analysis of CO2, N2O and CH4 and has the capacity to be rapidly customised for specific needs with options for N2 and N2O, Hydrogen isotopes in CH4 and denitrifier analysis.</p>


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 787 ◽  
Author(s):  
Enver Çavuşoğlu ◽  
Jean-Loup Rault ◽  
Richard Gates ◽  
Donald C. Lay

The swine industry is often forced to euthanize pigs in the first few weeks of life due to injuries, hernias, or unthriftiness. The majority of pigs are euthanized using carbon dioxide (CO2) gas asphyxiation but concerns as to the humaneness of CO2 are increasing. This study compared the euthanasia of weaned pigs using N2O (N2O; n = 9) or CO2 (n = 9), at 50% and 25% min−1 exchange rate, respectively. In addition, we administered an analgesic prior to euthanasia with CO2 (CO2B) exposure as a third treatment (n = 9) to elucidate behaviors indicative of pain. Pigs in the CO2 and N2O treatments lost posture at similar times (latency of 145.0 ± 17.3 and 162.6 ± 7.0 s respectively, p > 0.10), while the CO2B treatment pigs lost posture the soonest (101.2 ± 4.7 s, p < 0.01). The pigs in the CO2B treatment made more escape attempts than the CO2 or N2O pigs (16.4 ± 4.2, 4.7 ± 1.6, 0.3 ± 0.2, respectively; p < 0.0004). However, pigs in N2O squealed more often than either the CO2 or CO2B pigs (9.0 ± 1.6, 2.8 ± 1.2, 1.3 ± 0.6, respectively, p < 0.001). Given the similar time to loss of posture and shorter time displaying open mouth breathing, N2O may cause less stress to pigs; however, the greater number of squeals performed by these pigs suggests the opposite. It was not apparent that any behavior measured was indicative of pain. In conclusion, N2O applied at a 50% min−1 flow rate can be an alternative to CO2 for pig euthanasia.


2007 ◽  
Vol 7 (21) ◽  
pp. 5489-5499 ◽  
Author(s):  
A. Fraser ◽  
P. F. Bernath ◽  
R. D. Blatherwick ◽  
J. R. Drummond ◽  
P. F. Fogal ◽  
...  

Abstract. The MANTRA (Middle Atmosphere Nitrogen TRend Assessment) 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W) from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs) that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change) standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%). NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%).


2015 ◽  
Vol 15 (4) ◽  
pp. 5241-5267
Author(s):  
G. E. Nedoluha ◽  
I. S. Boyd ◽  
A. Parrish ◽  
R. M. Gomez ◽  
D. R. Allen ◽  
...  

Abstract. The Microwave Ozone Profiling Instrument (MOPI1) has provided ozone (O3) profiles for the Network for the Detection of Atmospheric Composition Change (NDACC) at Lauder, New Zealand, since 1992. We present the entire 22 year dataset and compare with satellite O3 observations. We will study in detail two particularly interesting variations in O3. The first is a large positive O3 anomaly which occurs in the mid-stratosphere at ~10–30 hPa in June 2001, and which is caused by an anticyclonic circulation that persists for several weeks over Lauder. We find that this O3 anomaly is associated with air with the highest June average tracer equivalent latitude (TrEL) over the 35 year period (1980–2014). A second, and longer-lived feature, is a positive O3 anomaly in the mid-stratosphere (~10 hPa) from mid-2009 until mid-2013. Coincident measurements from the Aura Microwave Limb Sounder (MLS) show that these high O3 mixing ratios are well correlated with high nitrous oxide (N2O) mixing ratios. This correlation suggests that the high O3 over this 4 year period is driven by unusual dynamics. The beginning of the high O3 and high N2O period at Lauder (and throughout this latitude band) occurs nearly simultaneously with a~sharp decrease in O3 and N2O at the equator, and the period ends nearly simultaneously with a~sharp increase in O3 and N2O at the equator.


2019 ◽  
Vol 11 (3) ◽  
pp. 1291-1308 ◽  
Author(s):  
Ryan Bares ◽  
Logan Mitchell ◽  
Ben Fasoli ◽  
David R. Bowling ◽  
Douglas Catharine ◽  
...  

Abstract. The Utah Urban CO2 Network (UUCON) is a network of near-surface atmospheric carbon dioxide (CO2) measurement sites aimed at quantifying long-term changes in urban and rural locations throughout northern Utah since 2001. We document improvements to UUCON made in 2015 that increase measurement precision, standardize sampling protocols, and expand the number of measurement locations to represent a larger region in northern Utah. In a parallel effort, near-surface CO2 and methane (CH4) measurement sites were assembled as part of the Uintah Basin greenhouse gas (GHG) network in a region of oil and natural gas extraction located in northeastern Utah. Additional efforts have resulted in automated quality control, calibration, and visualization of data through utilities hosted online (https://air.utah.edu, last access: 22 August 2019). These improvements facilitate atmospheric modeling efforts and quantify atmospheric composition in urban and rural locations throughout northern Utah. Here we present an overview of the instrumentation design and methods within UUCON and the Uintah Basin GHG networks as well as describe and report measurement uncertainties using a broadly applicable and novel method. Historic and modern data described in this paper are archived with the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) and can be found at https://doi.org/10.7289/V50R9MN2 (Mitchell et al., 2018c) and https://doi.org/10.25921/8vaj-bk51 (Bares et al., 2018a) respectively.


2016 ◽  
Vol 9 (9) ◽  
pp. 4471-4485 ◽  
Author(s):  
Cristina Robles-Gonzalez ◽  
Mónica Navarro-Comas ◽  
Olga Puentedura ◽  
Matthias Schneider ◽  
Frank Hase ◽  
...  

Abstract. A 13-year analysis (2000–2012) of the NO2 vertical column densities derived from ground-based (GB) instruments and satellites has been carried out over the Izaña NDACC (Network for the Detection of the Atmospheric Composition Change) subtropical site. Ground-based DOAS (differential optical absorption spectroscopy) and FTIR (Fourier transform infrared spectroscopy) instruments are intercompared to test mutual consistency and then used for validation of stratospheric NO2 from OMI (Ozone Monitoring Instrument) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY). The intercomparison has been carried out taking into account the various differences existing in instruments, namely temporal coincidence, collocation, sensitivity, field of view, etc. The paper highlights the importance of considering an “effective solar zenith angle” instead of the actual one when comparing direct-sun instruments with zenith sky ones for a proper photochemical correction. Results show that NO2 vertical column densities mean relative difference between FTIR and DOAS instruments is 2.8 ± 10.7 % for a.m. data. Both instruments properly reproduce the NO2 seasonal and the interannual variation. Mean relative difference of the stratospheric NO2 derived from OMI and DOAS is −0.2 ± 8.7 % and from OMI and FTIR is −1.6 ± 6.7 %. SCIAMACHY mean relative difference is of 3.7 ± 11.7 and −5.7 ± 11.0 % for DOAS and FTIR, respectively. Note that the days used for the intercomparison are not the same for all the pairs of instruments since it depends on the availability of data. The discrepancies are found to be seasonally dependent with largest differences in winter and excellent agreement in the spring months (AMJ). A preliminary analysis of NO2 trends has been carried out with the available data series. Results show increases in stratospheric NO2 columns in all instruments but larger values in those that are GB than that expected by nitrous oxide oxidation. The possible reasons for the discrepancy between instruments and the positive trends are discussed in the text.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 60
Author(s):  
Alexander H. Krichels ◽  
Emina Sipic ◽  
Wendy H. Yang

Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document