A new generalized Lindley-Weibull class of distributions: Theory, properties and applications

2021 ◽  
Vol 71 (1) ◽  
pp. 211-234
Author(s):  
Boikanyo Makubate ◽  
Thatayaone Moakofi ◽  
Broderick Oluyede

Abstract We propose a new generalized class of distributions called Lindley-Weibull Power Series (LWPS) distributions and their special case called Lindley-Weibull logarithmic (LWL) distributions. Structural properties of the LWPS class of distributions and its sub-model LWL distribution including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates are derived. A simulation study to examine the bias and mean square error of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed class of distributions.

2021 ◽  
Vol 16 (3) ◽  
pp. 2819-2941
Author(s):  
Fastel Chipepa ◽  
Broderick Oluyede ◽  
Boikanyo Makubate

We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


2021 ◽  
Vol 16 (3) ◽  
pp. 2825-2949
Author(s):  
Fastel Chipepa ◽  
Broderick Oludeye ◽  
Boikanyo Makubate

We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model


2018 ◽  
Vol 8 (1) ◽  
pp. 73
Author(s):  
Baitshephi Mashabe ◽  
Broderick O. Oluyede ◽  
Adeniyi F. Fagbamigbe ◽  
Boikanyo Makubate ◽  
Syamala Krishnannair

We propose a generalized class of distributions called the Webull-G Power Series (WGPS) family of distributions and its sub-model Weibull-G logarithmic (WGL) distributions. Structural properties of the WGPS family of distributions and its sub-model WGL distribution including hazard function, moments, conditional moments, order statistics, R´enyi entropy and maximum likelihood estimates are derived. A simulation study to examine the bias, mean square error of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model.


2020 ◽  
Vol 15 (4) ◽  
pp. 2481-2510
Author(s):  
Fastel Chipepa ◽  
Divine Wanduku ◽  
Broderick Olusegun Oluyede

A new flexible and versatile generalized family of distributions, namely, half logistic odd Weibull-Topp-Leone-G (HLOW-TL-G) distribution is presented. The distribution can be traced back to the exponentiated-G distribution. We derive the statistical properties of the proposed family of distributions. Maximum likelihood estimates of the HLOW-TL-G family of distributions are also presented. Five special cases of the proposed family are presented. A simulation study and real data applications on one of the special cases are also presented


2019 ◽  
Vol 56 (2) ◽  
pp. 185-210 ◽  
Author(s):  
Abraão D. C. Nascimento ◽  
Kássio F. Silva ◽  
Gauss M. Cordeiro ◽  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
...  

Abstract We study some mathematical properties of a new generator of continuous distributions called the Odd Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely the ONH gamma, beta and Weibull distributions. The family density function is given as a linear combination of exponentiated densities. Further, we propose a bivariate extension and various characterization results of the new family. We determine the maximum likelihood estimates of ONH parameters for complete and censored data. We provide a simulation study to verify the precision of these estimates. We illustrate the performance of the new family by means of a real data set.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2279
Author(s):  
Yolanda M. Gómez ◽  
Diego I. Gallardo ◽  
Osvaldo Venegas ◽  
Tiago M. Magalhães

In this paper, we introduce an extension of the sinh Cauchy distribution including a double regression model for both the quantile and scale parameters. This model can assume different shapes: unimodal or bimodal, symmetric or asymmetric. We discuss some properties of the model and perform a simulation study in order to assess the performance of the maximum likelihood estimators in finite samples. A real data application is also presented.


2019 ◽  
Vol 8 (6) ◽  
pp. 1
Author(s):  
Fastel Chipepa ◽  
Broderick O. Oluyede ◽  
Boikanyo Makubate

A new family of distributions, namely the Kumaraswamy Odd Lindley-G distribution is developed. The new density function can be expressed as a linear combination of exponentiated-G densities. Statistical properties of the new family including hazard rate and quantile functions, moments and incomplete moments, Bonferroni and Lorenz curves, distribution of order statistics and R´enyi entropy are derived. Some special cases are presented. We conduct some Monte Carlo simulations to examine the consistency of the maximum likelihood estimates. We provide an application of KOL-LLo distribution to a real data set.


2021 ◽  
Vol 10 (4) ◽  
pp. 33
Author(s):  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Morongwa Gabanakgosi

A new distribution called the Lindley-Burr XII (LBXII) distribution is proposed and studied. Some structural properties of the new distribution including moments, conditional moments, distribution of the order statistics and R´enyi entropy are derived. Maximum likelihood estimation technique is used to estimate the model parameters. A simulation study to examine the bias and mean square error of the maximum likelihood estimators is presented and applications to real data sets in order to illustrate the usefulness of the new distribution are given.


2020 ◽  
pp. 1-14
Author(s):  
Majdah M. Badr

Lifetime data collected from reliability tests are among data that often exhibit significant heterogeneity caused by variations in manufacturing which make standard lifetime models inadequate. In this paper we introduce a new lifetime distribution derived from T-X family technique called exponentiated exponential Burr XII (EE-BXII) distribution. We establish various mathematical properties. The maximum likelihood estimates (MLE) for the EE-BXII parameters are derived. We estimate the precision of the maximum likelihood estimators via simulation study. Some numerical illustrations are performed to study the behavior of the obtained estimators. Finally the model is applied to a real dataset. We apply goodness of fit statistics and graphical tools to examine the adequacy of the EE-BXII distribution. The importance of this research lies in deriving a new distribution under the name EE-BXII, which is considered the best distributions in analyzing data of life times at present if compared to many distributions in analysis real data.


Sign in / Sign up

Export Citation Format

Share Document