scholarly journals Deoxidizing effect on the low-alloyed steel's nonmetallic inclusion's compositions

Author(s):  
G. V. Serov ◽  
A. A. Komissarov ◽  
S. M. Tikhonov ◽  
E. P. Sidorova ◽  
I. V. Kushnerev ◽  
...  

The investigating results are given in the article for the deoxidizing effect on the non-metallic inclusion compositions tubes steels melted in the vacuum induction furnaces with periclase lining. The oxygen thermodynamic activity was calculated for the lanthanum, cerium, alumina and yttrium melts during four heats. The magnesia spinel inclusion's formation condition was evaluated depending on the deoxidizer's used and on the deoxidizing depth. It was shown how the reduced alumina concentration during the steel ladle treatment governs the non-metal inclusions' compositions and on the possibility of their modification during the commercial tubes steels melting.

Author(s):  
L V Tribushevskiy ◽  
G A Rumyantseva ◽  
B M Nemenenok
Keyword(s):  

Author(s):  
V. A. Golubtsov ◽  
I. V. Bakin ◽  
A. A. Tokarev ◽  
I. V. Ryabchikov ◽  
G. G. Mikhailov

To achieve a high quality of steel a wide range of liquid metal treatment methods applied. The choice of method is often determined by technological possibilities of the metal products manufacturer. An analysis of various physical and chemical methods of steel quality improvement accomplished, which allowed making a choice of liquid metal treatment method, depending on existing tasks and technological possibilities. It was shown, that physical and chemical methods of metal products quality improvement apart from other methods of ladle treatment have additional possibilities to effect steel quality. In some cases, those methods allow to exclude a complicated technological equipment, to reduce considerably expenses for liquid metal ladle treatment and to improve the products quality. A comparative analysis of methods of steel ladle treatment accomplished. Data on the active elements behavior in the iron based melts quoted. The mechanism of modification, inoculation and steel micro-alloying processes described. Data on industrial application those processes to obtain quality metal products quoted. It was shown, that melt modification process allows changing the metal structure, decreasing its impurity by nonmetallic inclusions, to change the nature, form and character of their distribution in the metal. Effect of the micro-alloying has a long-term and stable character of alloying elements impact and allows effecting the steel quality, changing steel chemical and phase compositions. Inoculation allows considerable increasing the ability of nuclei formation and effect the metal crystallization parameters due to formation of ready crystallization centers in the solidifying alloy. Base on analysis results a conclusion made, that physical and chemical methods of impact on steel allow purposefully effecting the metal products properties, reduce the cost of metal treatment and increase its quality.


Author(s):  
A. D. Khoroshilov ◽  
P. A. Salikhanov ◽  
D. P. Byzov ◽  
M. V. Zhironkin ◽  
K. B. Bikin

Author(s):  
M. K. Isaev ◽  
V. A. Bigeev ◽  
A. B. Sychkov ◽  
A. M/ Stolyarov

Metal processing in ladle by calcium-containing cored wires is one of the most spread methods of ladle treatment and modifying. Results of analysis of efficiency induces of existing cored wires application depending on their diameter, wall thickness and filling coefficient presented. It was shown that the basic efficiency index of a cored wire application – recovery coefficient – depending on wire quality (homogeneity of filling by calcium along the wire length), wire grade, conditions of its injection into liquid steel and other parameters can vary within a range from 50 to 95%. Reasons of unsatisfactory calcium recovery at usage of calcium-containing wires of 14–15 mm diameter with steel shell 0.4 mm thick and filling of mechanical mixture of steel shots and metallic calcium in various proportions was considered. Advantages of the modern calcium-containing cored wire with thicker wall were highlighted, including their higher wire rigidity and stability of its supply by a wire feeder into liquid steel. It was established that calcium content in a cored wire at the level of 100 g/m was the most effective composition. It was noted that increase of speed of cored wire feeding into steel will result in an increase of calcium recovery and in a decrease of probability of metal splashing out the steel ladle.


Author(s):  
A. V. Sazonov ◽  
E. E. Merker ◽  
A. A. Kozhukhov

Analytical calculations carried out to determine the degree of heat recovery by a liquid melt depending on the electric mode and the residual height of the furnace slag. It was shown that despite the use of automation systems, the temperature semiproduct tapping does not always correspond to the one specified in the process documentation. In this regard, there is a period of “finishing”, which is carried out at lower voltage steps and with a minimum residual mass of slag on the surface of the melt. An increase in slag mass leads to a decrease in the “freeboard” value in the steel ladle after tapping, which, in consequence, can lead to its downloading during ladle treatment procedure, with the loss of expensive additional materials. Based on the analysis of the data obtained, options proposed for improving the degree of heat recovery of electric arcs during the “finishing” period by changing the electrical parameters at a fixed height of residual slag in the furnace.


Author(s):  
V. A. Golubtsov ◽  
I. V. Ryabchikov ◽  
I. V. Bakin ◽  
A. Ya. Dynin ◽  
O. N. Romanov ◽  
...  

Contamination of steel by nonmetallic inclusions (NI) has a negative effect on mechanical characteristics of metal used under no favorable conditions. Conditions of NI forming in the process of steel smelting, ladle treatment and casting considered. It was shown that it is impossible to get rid of many NI. However, the task of forming less “harmful” NI having minimal effect on the decrease of finished products indices is quite practicable. To refine steel of NI it is reasonable to accomplish operations in a melt to modify NI morphology from dangerous acute-angled aluminous to globular oxide-sulphide. This task can be solved by introduction into metal complex modifiers comprising calcium, barium, strontium and rare earth metals. Addition of complex modifiers is a good alternative to complicative and long-time operations to decrease NI general content to lower levels, for example, by long-time metal ladle treatment. Application of the method enables in some situation to avoid expensive operations related to deep metal desulphuri zation and its dehydronization. Clean steel production becomes considerably easier at application of multicomponent alloys, obtained by a technology of accelerated crystallization. Application of such compositions results in forming globular oxide and oxide-sulphide compounds, as well as eutectics with low-melting point, which are comparatively quickly removed out of liquid metal. At that due to decreasing of liquation processes forming in the liquid metal, higher quality of large ingots and work-pieces, obtained from 420 t mass ingots can be reached.


Author(s):  
L. M. Akselrod ◽  
V. Garten

Quality of steel ladles lining to a big extent determine the economic efficiency of steel-making operation. Direct costs on the refractory lining of them can reach 30–50 % of the costs of lining of a steel-making complex. Experience of utilization of refractory materials of different composition considered with the purpose of efficiency increase of refractory materials application in the steel ladles lining under conditions of steel ladle treatment. Considerable abilities shown to make the lining of steel ladle walls and bottom by both carbon-containing and carbon-free refractory materials taking into account the economic aspect. Lining base of steel-making facilities — BOFs, EAFs and steel ladles — is composed by periclase-carbon (MgO–C) refractories. However those refractories have a high heat conductivity, that effects on the heat operation of steel ladles. When using MgO–С materials, vertical fractures can appear in the ladle walls lining as its residual thickness becomes small. Under definite conditions a working lining chipping takes place, problems appear with lining destruction in the pieces angles with cavities formation at the pieces joining. To level the MgO–С drawbacks, periclase-alumo-carbon (MgO–Al2O3–С) and alumo-periclase-carbon (Al2O3–MgO–С) refractory products are used. Al2O3–MgO–C refractories are widely used in most erosion-intensive lining zone — in the combatting place of steel ladle bottom lining. In Russia monolithic lining of steel ladle bottom is successfully displacing the lining by piece products, including alumo-periclase-carbon ones. Such a replace enables to decrease specific refractory consumption and specific costs of them. At present the technology of concrete application to bottom is implemented for ladles of BOF- and steel-making shops. A technology of concrete ladle walls and bottom is intensively implemented for 120–180-ton ladles. The concrete lining of steel ladles has the following advantages: high withstandability against impregnation by metal-slag melt; absence of metal carbonization by the carbon from ladle lining; increase of running duration of safety lining layer by 2–2.5 times; absence of necessity to use nest blocks in both steel outlet unit and for bottom blow-off lance; absence of cracks in lining, wash-outs in seams, angles and edges of pieces; decrease of gaseous hydrocarbon emissions(phenol, formaldehyde, benzapilene) during lining drying, heating-up and operation (only slag belt remains, where pieces have organic binders); saving of materials, working time and manpower while making and maintain the lining; decrease of specific consumption and specific costs for lining per 1t of steel. For lining of steel ladles of big volumes (more 250 t) alumo-periclase (alumo-spinel) products are widely used in China, Europe and Japan. For such a lining the thermo-mechanical tension, arising in monolithic ladle lining, has a less importance, including at its replacing with metal by using crane. It is easier for the products to compensate the ladle geometry change, resulted in metal shall geometry change in time. A positive influence of carbon-free lining, as well as a lining with low content of magnesium oxide, on metal quality noted, first of all for low- and ultralow carbon grades, and pipe low-alloyed steels.


2019 ◽  
Vol 62 (5) ◽  
pp. 345-352 ◽  
Author(s):  
D. V. Gorkusha ◽  
K. V. Grigorovich ◽  
A. V. Karasev ◽  
O. A. Komolova

Development of advanced materials for the automotive industry allows us to produce a lighter body without losing strength characteristics of the structure. It became possible by the creation and subsequent introduction into the production of such steel grades as IF (Interstitial Free) – steel with no interstitial solute atoms to strain the solid iron lattice and IF-BH (Bake Hardening) – steel with hardening during hot drying. The article provides a brief overview of the history of the emergence of IF steel and the current situation in the production of it in Russia. One of the quality criteria for steels of IF grades is purity of the metal by non-metallic inclusions (NMI), which negatively affect the plastic properties of the material, lead to the formation of surface defects of flat rolled products and reduce the manufacturability due to a decrease in the casting speed of steel, as they cause overgrowing of steel casting nozzles. The article presents investigation results of the content, composition, size and morphology of non-metallic inclusions (NMI) in the metal samples taken at all stages of ladle treatment and casting of IF steel grade production using quantitative metallographic analysis, electrochemical dissolution (ED) followed by X-ray microanalysis of isolated inclusions, Auger electron spectroscopy and fractional gas analysis (FGA). As a result of the analysis of inclusions in the studied samples using a scanning electron microscope, according to morphological features, five characteristic types of inclusions were identified, which reduce the performance properties and strength cha racteristics of the materials produced from them. Results of the analysis of nonmetallic inclusions in metal samples obtained by the ED method are in good agreement with the results of the determination of oxide nonmetallic inclusions by the FGA method. The method of fractional gas analysis shows the dynamics of changes in the content of various types of oxide nonmetallic inclusions during the secondary (ladle) treatment of steel. It is shown that application of the FGA method allows to make analysis of causes of the harmful NMI formation in the metal and to correct operations at ladle treatment.


Author(s):  
A.V V. Protasov

Apart from traditional methods of steel ladle treatment, degassing in the process of continuous casting (in-line degassing) is a perspective one. In the world a line of process flowsheets have been elaborated, but in practice the only one process has been implemented, which was developed by Professor G.A. Sokolov based on theoretical elaborations. The experience of its application in the BOF shop No. 2 of NLMK confirmed the efficiency of degassing in the process of continuous casting and expediency of further work on perfection of the technology and facilities structure for in-line degassing. Accounting the experience gained at AKHK “VNIIMETMASH”, a modified variant of in-line degassing facility was elaborated based on technological specifications of CNIIchermet. It was noted, that thanks to additional bunker-accumulator, fixed at the vacuum chamber, a possibility appeared to change steel ladles without disruption of continuous casting series. It enables to increase the share of degassed steel. At the designing of BOF shop of “Zaporozhstal” steel-works, planned for construction, specialists of AKHK “VNIIMETMASH”, CNIIchermet and YUMZ elaborated a design of two-position facility of increased efficiency for steel in-line degassing. Detailed description of the facility design presented as well as description of its basic units, elaborated at the level in invention. Taking into account that the facility height with the accumulator will make it difficult to place it in the existing shops, a modified in-line degassed elaborated without accumulator, which makes it possible continuous degassing of several heats. Such a degasser can be applied at both continuous casting of steel and casting of large ingots from several heats. The backlog, created by domestic scientists and specialists enables to solve technical problems, arising at elaboration and running of modern facilities of in-line degassing.


Sign in / Sign up

Export Citation Format

Share Document