Experience of thick-walled calcium-containing cored wire application at steel ladle treatment

Author(s):  
M. K. Isaev ◽  
V. A. Bigeev ◽  
A. B. Sychkov ◽  
A. M/ Stolyarov

Metal processing in ladle by calcium-containing cored wires is one of the most spread methods of ladle treatment and modifying. Results of analysis of efficiency induces of existing cored wires application depending on their diameter, wall thickness and filling coefficient presented. It was shown that the basic efficiency index of a cored wire application – recovery coefficient – depending on wire quality (homogeneity of filling by calcium along the wire length), wire grade, conditions of its injection into liquid steel and other parameters can vary within a range from 50 to 95%. Reasons of unsatisfactory calcium recovery at usage of calcium-containing wires of 14–15 mm diameter with steel shell 0.4 mm thick and filling of mechanical mixture of steel shots and metallic calcium in various proportions was considered. Advantages of the modern calcium-containing cored wire with thicker wall were highlighted, including their higher wire rigidity and stability of its supply by a wire feeder into liquid steel. It was established that calcium content in a cored wire at the level of 100 g/m was the most effective composition. It was noted that increase of speed of cored wire feeding into steel will result in an increase of calcium recovery and in a decrease of probability of metal splashing out the steel ladle.

Author(s):  
Adán Ramirez-Lopez ◽  
Omar Davila-Maldonado ◽  
Alfronso Nájera-Bastida ◽  
Rodolfo Morales ◽  
Jafeth Rodríguez-Ávila ◽  
...  

Steel is one of the essential materials in the world's civilization. It is essential to produce many products such as pipelines, mechanical elements in machines, vehicles, profiles, and beam sections for buildings in many industries. Until the '50s of the 20th century, steel products required a complex process known as ingot casting; for years, steelmakers focused on developing and simplifying this process. The result was the con-tinuous casting process (CCP); it is the most productive method to produce steel. The CCP allows producing significant volumes of steel sections without interruption and is more productive than the formal ingot casting process. The CCP begins by transferring the liquid steel from the steel-ladle to a tundish. This tundish or vessel distributes the liquid steel, by flowing through its volume, to one or more strands having wa-ter-cooled copper molds. The mold is the primary cooling system, PCS, solidifying a steel shell to withstand a liquid core and its friction forces with the mold wall. Further down the mold, the rolls drive the steel section in the SCS. Here the steel section is cooled, solidifying the remaining liquid core, by sprays placed in every cooling segment all around the billet and along the curved section of the machine. Finally, the steel strand goes towards a horizontal-straight free-spray zone, losing heat by radiation mechanism, where the billet cools down further to total solidification. A moving torch cutting-scissor splits the billet to the desired length at the end of this heat-radiant zone.


Author(s):  
A. D. Khoroshilov ◽  
P. A. Salikhanov ◽  
D. P. Byzov ◽  
M. V. Zhironkin ◽  
K. B. Bikin

Author(s):  
N. A. Kozyrev ◽  
A. A. Usol’tsev ◽  
A. N. Prudnikov ◽  
R. E. Kryukov ◽  
A.. R. Mikhno

Applying of wear-resistant alloyed coatings by build-up welding is one of methods to provide high operation properties of technological, metallurgical in particular equipment. Technologies of strengthening by direct alloying or reducing of alloying materials from oxide phases by reducing agent directly in the arc during building-up are most efficient ones. For build-up, cored wires are used frequently nowadays. A possibility to manufacture cored wires based on ferrochrome production gas-cleaning dust and powders of silicon, aluminum, and aluminum production gas-cleaning dust as reducing agents considered. Chemical composition and relation between cored wires components quoted. Manufacturing of 5 mm diameter wire accomplished at laboratory facility by running through draw plate. Duringestimation of efficiency of the manufactured cored wires application a regime of build-up was selected, study of chemical composition of built-up metal carried-out, wearing tests made, measuring of built-up samples hardness carried-out. Coefficients of chrome recovery coefficient at different relation between filling materials were calculated. Statistical processing of the study results accomplished statistical dependences of components content influence onthe built-up layer properties plotted. Study of the built-up showed, that chrome recovery in the built-up layer depends completely on the cored wire filling coefficient. At that under other conditions being equal, the hardness always correlates with the wear, and increase of chrome concentration results in reduction of the surface wear. Dependents of mass share elements comprising the cored wire content on built-up layer hardness and its wear resistance determined. The dependences obtained can be used for forecasting of builtup layer hardness and its wear resistance while built-up metal chemical composition varying.


Author(s):  
A. V. Gaivoronoskii ◽  
N. V. Pavlova

The increase in freight cars axis loads, dynamic loads and heat impact on the wheels, change of other factors, stipulated by railway transport traffic intensification lead to considerable decrease of service life of solid-rolled wheels. To increase the service life of them, provision of the transport metal purity in non-deformed oxide nonmetallic inclusions with high content of Al2O3, decrease of general steel pollution by nonmetallic inclusions by micro-alloying and modification is an actual task. The purpose of the study was elaboration of wheel steel ladle treatment technology, including the steel micro-alloying and modification by barium-containing alloys to create material, which could meet high operation requirements, made to the railway wheels of new generation, intended to operate under increased axis loads conditions at the modern high-speed rolling-stock. It was shown, that replacement of everywhere applied silicocalcium by barium-based alloys is one of perspective ways of modification mechanism perfection. Results of industrial tests of micro-alloying of wheel steel by barium during ladle treatment presented. It was shown, that application for modification of cored wire with silicobarium filler instead of cored wire with silicocalsium filler СК-30, enabled to transform the nonmetallic inclusions into globular form practically completely, to raise the steel purity for all kinds of inclusions in both middle and maximum points range and to refine to some extent the grain size by 1-2 points. In the pilot metal at the depth of 40 mm from the surface, the gain was somewhat finer and more uniform (number 7), comparing with the existing technology (number 5-6). The pollution of the pilot metal by nonmetallic inclusions meets requirements of GOST 10791—2011 for category A and those of the standard EN 13262: 2004+А2:2011 for category 1.


Author(s):  
A. V. Protasov

Modern ladle treatment of liquid steel represents a wide set of technological processes and aggregates, as well as units and systems, many of them having significant cost and need expensive maintenance. Technical and economic advantages, obtained at various variants of steel ladle treatment considered, the advantages being at both metal products producers and consumers. Factors of production expenses saving at the stage of steel smelting due to transferring of the steel refining operation from melting aggregates to the stage of ladle treatment considered. It was noted, that in the process of continuous casting of metal, subjected to ladle refining, the steel casting improves considerably due to keeping the narrow temperature interval, decreased content and globular form of nonmetallic inclusions. In its turn it results in a decrease of rejects, an increase of billet drawing speed possibility and correspondent increase of production capacity, reduction of the number of the casted billet shell breaks. Technical and economic advantages of melt treatment by cored wire or by all-metal injection wire with stuff shown. Decrease of rejects is an important factor for cost decreasing. For example, application of calcium-aluminum cored wire at a steel-works enabled to decrease the rejects of well-casings made of 20ГЮ steel by a factor of 1.5–2. In many cases production of state-of-the-art steel grades, for example IF-steels, being the base of the modern motor-car construction, is not possible without ladle treatment. Therefore, absence of ladle treatment elements at a big steelworks can lead to considerable losses.


2016 ◽  
Vol 16 (3) ◽  
pp. 39-42 ◽  
Author(s):  
M. Gucwa ◽  
J. Winczek ◽  
R. Bęczkowski ◽  
M. Dośpiał

Abstract The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical microscopy and X-ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of investigated coatings.


Author(s):  
E.R. Sampson

Abstract The use of cored wires for thermal spraying is a relatively new development that is being rapidly utilized for arc spray in a wide variety of applications. This paper will discuss the existing applications and industries in which cored wire coatings are used. Additionally, this presentation will cover the effect cored wires have had on the use ofother types ofthermal spray equipment. The paper will close with a trend analysis that discusses the applications of the future.


Author(s):  
L V Tribushevskiy ◽  
G A Rumyantseva ◽  
B M Nemenenok
Keyword(s):  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1715 ◽  
Author(s):  
Ning Guo ◽  
Lu Huang ◽  
Yongpeng Du ◽  
Qi Cheng ◽  
Yunlong Fu ◽  
...  

Underwater wet welding technology is widely used. Because the stability of droplet transfer in underwater wet welding is poor, the feasibility of improving the droplet transfer mode has been discussed from various technical directions. In this work, the characteristics of pulsating wire feeding were studied in the pulsating wire feeding mode by investigating the effects of changing the pulsating frequency, the wire withdrawal speed, and the wire withdrawal quantity on the droplet transfer process and the welding quality. With the aim of improving weld forming and welding stability, the authors selected the coefficient of variation and the ratio of unstable droplet transfer as the indexes to evaluate the effect of droplet transfer control. The pulsating wire feeding process of underwater wet flux-cored wire was analyzed in depth, and the following conclusions were drawn: using the pulsating wire feeding mode and after comparing and analyzing the pulsed wire feeding process under the same frequency condition, the authors found that the forming and stability were better under the conditions of slower withdrawal speed and smaller withdrawal quantity. The short-circuit transition ratio decreased steadily with the increase of pulsating wire feeding frequency, the rejection transition ratio first rose and then decreased, and the splash ratio first decreased and then rose.


2011 ◽  
Vol 13 (7) ◽  
pp. 538-542 ◽  
Author(s):  
Pascal Gardin ◽  
Ségolène Gauthier ◽  
Marie Simonnet ◽  
Jean Lehmann

Sign in / Sign up

Export Citation Format

Share Document