scholarly journals DEVELOPMENT OF A MATHEMATICAL MODEL FOR CALCULATING HYDRATE FORMATION IN A PIPELINE TAKING INTO ACCOUNT TEMPERATURE CHANGE

2021 ◽  
Vol 19 (4) ◽  
pp. 107
Author(s):  
A.A. Paranuk ◽  
A.V. Bunyakin ◽  
S.I. Shiyan
2016 ◽  
Author(s):  
Oluwatoyin Akinsete ◽  
Sunday Isehunwa

ABSTRACT Natural gas, one of the major sources of energy for the 21st century, provides more than one-fifth of the worldwide energy needs. Storing this energy in gas hydrate form presents an alternative to its storage and smart solution to its flow with the rest of the fluid without creating a difficulty in gas pipeline systems due to pressure build-up. This study was design to achieve this situation in a controlled manner using a simple mathematical model, by applying mass and momentum conservation principles in canonical form to non-isothermal multiphase flow, for predicting the onset conditions of hydrate formation and storage capacity growth of the gas hydrate in pipeline systems. Results from this developed model shows that the increase in hydrate growth, the more the hydrate storage capacity of gas within and along the gas pipeline. The developed model is therefore recommended for management of hydrate formation for natural gas storage and transportation in gas pipeline systems.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1482
Author(s):  
Marat K. Khasanov ◽  
Nail G. Musakaev ◽  
Maxim V. Stolpovsky ◽  
Svetlana R. Kildibaeva

The article describes a mathematical model of pumping of heated liquid carbon dioxide into a reservoir of finite extent, the pores of which in the initial state contain methane and methane gas hydrate. This model takes into account the existence in the reservoir of three characteristic regions. We call the first region “near”, the second “intermediate”, and the third “far”. According to the problem statement, the first region contains liquid CO2 and hydrate, the second region is saturated with methane and water, the third contains methane and hydrate. The main features of mathematical models that provide a consistent description of the considered processes are investigated. It was found that at sufficiently high injection pressures and low pressures at the right reservoir boundary, the boundary of carbon dioxide hydrate formation can come up with the boundary of methane gas hydrate decomposition. It is also shown that at sufficiently low values of pressure of injection of carbon dioxide and pressure at the right boundary of the reservoir, the pressure at the boundary of hydrate formation of carbon dioxide drops below the boiling pressure of carbon dioxide. In this case, for a consistent description of the considered processes, it is necessary to correct the mathematical model in order to take into account the boiling of carbon dioxide. Maps of possible solutions have been built, which show in what ranges of parameters one or another mathematical model is consistent.


Author(s):  
Stanislav L. Borodin ◽  
Denis S. Belskikh

Gas hydrates, which contain the largest amount of methane on our planet, are a promising source of natural gas after the depletion of traditional gas fields, the reserves of which are estimated to last about 50 years. Therefore, it is necessary to study the methods for extracting gas from gas hydrates in order to select the best of them and make reasoned technological and engineering decisions in the future. One of these methods is the replacement of methane in its hydrate with carbon dioxide. This work studies the construction of a mathematical model to observe this method. The following process is considered in this article: on one side of a porous reservoir, initially saturated with methane and its hydrate, carbon dioxide is injected; on the opposite side of this reservoir, methane and/or carbon dioxide are extracted. In this case, both the decomposition of methane hydrate and the formation of carbon dioxide hydrate can occur. This problem is stated in a one-dimensional linear formulation for the case of negative temperatures and gaseous carbon dioxide, which means that methane, carbon dioxide, ice, methane, and carbon dioxide hydrates may be present in the reservoir. A mathematical model is built based on the following: the laws of conservation of masses of methane, carbon dioxide, and ice; Darcy’s law for the gas phase motion; equation of state of real gas; energy equation taking into account thermal conductivity, convection, adiabatic cooling, the Joule — Thomson effect, and the release or absorption of latent heat of hydrate formation. The modelling assumes that phase transitions occur in an equilibrium mode and that methane can be completely replaced by carbon dioxide. The results of numerical experiments are presented.


2021 ◽  
Vol 3 (4) ◽  
pp. 34-39
Author(s):  
Ziyang He ◽  
Bo Wen

In order to achieve the goal of protecting people from wildfire, we propose to build a safety house to reduce mortality. This paper mainly creates a mathematical model about the house’s temperature change. Assuming an ideal heat balance model, we use the method of Joint Cube Systems and Self Iteration to simulate the whole process of heat radiation again.


2019 ◽  
Vol 60 (3) ◽  
pp. 503-509
Author(s):  
E. A. Bondarev ◽  
I. I. Rozhin ◽  
K. K. Argunova

2008 ◽  
Vol 6 ◽  
pp. 205-209
Author(s):  
V.Sh. Shagapov ◽  
R.R. Urazov

The flow of wet natural gas in the pipeline is considered in the presence of the formation of gas hydrates on the internal walls of the channel. In the description of the phenomenon, such interrelated processes as phase transformations and mass transfer of water into the composition of gas hydrates, heat transfer between the gas stream and the environment, heat conductivity in the ground are taken into account.


2019 ◽  
Vol 102 ◽  
pp. 01001
Author(s):  
Edward Bondarev ◽  
Igor Rozhin ◽  
Kira Argunova

Mathematical model of non-isothermal gas flow within the framework of tube hydraulics including change of tube cross-section due to hydrate formation and the dependence of coefficient of heat transfer between gas and hydrate layer on varying flow area is proposed. The corresponding conjugate problem of heat exchange between imperfect gas in the pipeline and the environment is reduced to the solution of differential equations describing non-isothermal flow of gas in pipes and heat transfer equations in ground with the corresponding conjugation conditions. In the quasi-stationary mathematical model of hydrate formation (dissociation), the dependence of gas-hydrate transition temperature on gas pressure is taken into account. Some decisions taken in the design of the first section of the main gas pipeline «Power of Siberia» have been analyzed. It has been shown that if gas is not sufficiently dried, outlet pressure may drop below the technological limit in about 6-7 hours. At the same time, for completely dry gas ,it is possible to reduce the cost of thermal insulation of the pipeline at least two fold.


2018 ◽  
Vol 22 (1 Part A) ◽  
pp. 323-333 ◽  
Author(s):  
Ranko Antunovic ◽  
Amir Halep ◽  
Mihael Bucko ◽  
Sreten Peric

Sign in / Sign up

Export Citation Format

Share Document