scholarly journals MAP OF RADIOISOTOPE PRODUCTION AND BATAN RESEARCH REACTOR UTILIZATION

2021 ◽  
Vol 23 (3) ◽  
pp. 105
Author(s):  
Endiah Puji Hastuti ◽  
Iman Kuntoro ◽  
Suwoto Suwoto ◽  
Syarip Syarip ◽  
Prasetyo Basuki ◽  
...  

Currently, Indonesia through BATAN is operating three research reactors, namely the RSG-GAS reactor with the power of 30 MWt at Puspiptek south Tangerang (the first criticality in 1987), the TRIGA 2000 reactor with the power of 2 MW in Bandung which the first criticality in 1965 with the power of 250 kW, was increased to 1 MW in 1971, and further upgraded to 2 MW in 2000. Beside that, there is Kartini reactor with a power of 100 kW located in Yogyakarta (first criticality in 1979). These reactors are quite old, and in accordance with Bapeten regulations, have carried out the first periodic safety review, to obtain a reactor license for the next 10 years of operation. In line with this, one of BATAN's current national research programs is to increase the production of radioisotopes and radiopharmaceuticals, where reactors play a very important role in the production of certain isotopes. In tracing the data obtained from operational reports related to irradiation requests from reactor users, namely PTRR, PSTNT, and PT INUKI for radioisotope production, which has been carried out in the last 5 years, May 2015 until 25 August 2020, show that the irradiation request at RSG-GAS is still not optimal. In term of the utilization of RSG-GAS, it can still be optimized, which in this case needs to be balanced with post-irradiation processing capabilities. Meanwhile, from the results of tracing and data collection, it can be shown that at this time the reactors are still operating. The utilization activities of the reactors complement each other according to their age and facilities.

2019 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Tukiran Surbakti ◽  
Purwadi Purwadi

The main safety parameters of Multipurpose Reactor–Gerrit Augustinus Siwabessy (RSG-GAS) have never been evaluated periodically and neutronically require to be evaluated in terms of stuck rod reactivity, shut-down margin and temperature reactivity coefficient are treated by experiment. Meanwhile, power peaking factors and maximum fuel burn up are treated by calculations. The diffusion method did the calculation using the computer code. Safety parameters are very important aspects for the operation and design improvement. The results of the experiment and calculation about the safety parameters of RGS-GAS core are utilized for safety evaluation as part of a research reactor operation Periodic Safety Review (PSR). It presents reactor calculations as a method for their determination assuming use of computer codes such as WIMSD-5B using ENDF.BVII.0 and BATAN-FUEL. According to the experimental data and calculation, neutronic safety parameters have met the safety analysis report such as reactivity coefficient is negative and met the shutdown margin at stuck rod condition nothing has violated the safety margin. The results can be used as the periodic safety review for renewal operation license from Nuclear Energy Regulatory Agency of Indonesia (BAPETEN) as the regulator body. These results also can be used as a reference for new research reactor MTR type advanced design in the future.


2020 ◽  
Vol 6 ◽  
pp. 40
Author(s):  
Stéphane Valance ◽  
Bruno Baumeister ◽  
Winfried Petry ◽  
Jan Höglund

Within the Euratom research and training program 2014–2018, three projects aiming at securing the fuel supply for European power and research reactors have been funded. Those three projects address the potential weaknesses – supplier diversity, provision of enriched fissile material – associated with the furbishing of nuclear fuels. First, the ESSANUF project, now terminated, resulted in the design and licensing of a fuel element for VVER-440 nuclear power plant manufactured by Westinghouse. The HERACLES-CP project aimed at preparing the conversion of high performance research reactor to low enriched uranium fuels by exploring fuels based on uranium-molybdenium. Finally, the LEU-FOREvER pursues the work initiated in HERACLES-CP, completing it by an exploration of the high-density silicide fuels, and including the diversification of fuel supplier for soviet designed European medium power research reactor. This paper describes the projects goals, structure and their achievements.


Author(s):  
L. Guinard ◽  
S. Parey ◽  
H. Cordier ◽  
L. Grammosenis

Abstract According to the Periodic Safety Review Process, the safety level is re-assessed every ten years, considering national and international operational feedback, evolution of knowledge and best available practices. Protection against natural hazards is part of this safety level re-assessment. In the current global change context, climate change impact has to be integrated in external natural hazards estimations, such as climatic hazards or external flooding. EDF has consequently implemented a climate watch approach. Undertaken approximately every 5 years, roughly in line with the publication of the assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and with the update of safety licensing basis during Periodic Safety Reviews, this approach is intended to: - revisit the climatic hazards which present a plausible or certain upward trend, and could lead to an increased reference hazard level, - monitor the reach of target levels which should trigger a thorough analysis (concept of Major Climate Event) to ensure the robustness of the reference hazard level between two periodic reviews. This climate watch approach is developed in partnership with the scientific community and is based on the following activities: - compile and analyze datasets on hazards that are subject to changes with climate change (observed and modelled time series), - develop knowledge of associated climatic phenomena (models, projections). The application of this approach is presented in two steps: - the key implications of the last climate watch exercise carried out in 2015, which identified climatic hazards whose evolution is unfavorable and is plausible or certain for the sites of EDF NPPs: ○ High air and water temperatures (for the “heat wave” hazard) ○ Sea level (for the “external flooding” hazard for coastal or estuary sites) ○ Drought or « low flow » hazard for fluvial sites; - the results obtained for the 900 MW units, for which EDF started the 4th periodic safety review in 2019. Such an approach, which is closely linked to periodic reviews, ensures the robustness of nuclear power plants to the climatic hazards through the consideration of the updated hazard levels.


2020 ◽  
Vol 6 ◽  
pp. 26
Author(s):  
Gilles Bignan ◽  
Jean-Yves Blanc

The panorama of research reactors in the world is at a turning point, with many old ones being shutdown, a very few new ones under construction and many newcomer countries interested to get access to one or to build one domestic research reactor or zero-power reactor. In this evolving context, several actions have been set up to answer this international collaboration need: the IAEA has launched the ICERR initiative, the OECD/NEA is proposing the P2M joint project proposal. In France, the Jules Horowitz Reactor (JHR), under construction at CEA Cadarache, within an International Consortium, will be one of the few tools available for the industry and research in the next decades. The paper presents some update of its construction, its experimental capacities and the European support through FP7 and H2020 tools. This paper provides also some insights of international tools (ICERR, P2M) and about the International Group on Research Reactors (IGORR) and how they complement or interact with the JHR.


Author(s):  
Qing Lu ◽  
Suizheng Qiu ◽  
Wenxi Tian ◽  
Guanghui Su

A code has been developed with proper models for the thermal-hydraulic simulation of research reactors, and the accident of loss of offsite power of CARR (the China Advanced Research Reactor) has been analyzed. It is found that the transient can be departed into four parts with two peaks, and at last terminated to a natural circulation state. Furthermore, in order to investigate the effect of the height of the in core structures during this accident, several structure changes have been proposed and analyzed. It is demonstrated that the increase of the vertical height of the in core structures not always do help to decreasing the peak temperatures and increasing the natural circulation flow in the transient.


2013 ◽  
Author(s):  
Omesh K. Chopra ◽  
Dwight R. Diercks ◽  
David Chia-Chiun Ma ◽  
Yogendra S. Garud

2010 ◽  
Vol 73 ◽  
pp. 78-90 ◽  
Author(s):  
Sven van den Berghe ◽  
Ann Leenaers ◽  
Edgar Koonen ◽  
Leo Sannen

Since the 1970's, global efforts have been going on to replace the high-enriched (>90% 235U), low-density UAlx research reactor fuel with high-density, low enriched (<20% 235U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U3Si2 dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U3Si2 (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development.


Sign in / Sign up

Export Citation Format

Share Document