Contribution analysis of electrical energy management in the industrial and commercial sector: a challenge to the Tanzania utility industry

2008 ◽  
Vol 19 (1) ◽  
pp. 55-61 ◽  
Author(s):  
A.K. Mohamed ◽  
M.T.E. Kahn

The investigation of electrical energy management (EEM) in the industrial and commercial sector determines how energy management affects elec-tricity consumption and what makes its potential for being used to reduce peak demand of utility indus-tries. The aim of this paper is to analyze the contri-bution of electrical energy management in the industrial and commercial sector and highlight its challenges to the Tanzanian utility industry. Energy efficiency technology analyzed in this paper includes energy efficiency lighting and power factor improvement. The analysis found that, if EEM is properly implemented, a significant amount of energy could be saved and could be converted to monetary benefits which might facilitate the devel-opment of other activities. The utility industry can benefit from saving considerable amounts of energy as well as the reduction of peak demand which can minimize the race of stumbling on new energy sources and construction of new power plants. The saved energy can be distributed to other consumers so as to improve accessibility or reliability of the electrical system and consequently minimize the impact of environmental pollution.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2582 ◽  
Author(s):  
Samuel Lotsu ◽  
Yuichiro Yoshida ◽  
Katsufumi Fukuda ◽  
Bing He

Confronting an energy crisis, the government of Ghana enacted a power factor correction policy in 1995. The policy imposes a penalty on large-scale electricity users, namely, special load tariff (SLT) customers of the Electricity Company of Ghana (ECG), whose power factor is below 90%. This paper investigates the impact of this policy on these firms’ power factor improvement by using panel data from 183 SLT customers from 1994 to 1997 and from 2012. To avoid potential endogeneity, this paper adopts a regression discontinuity design (RDD) with the power factor of the firms in the previous year as a running variable, with its cutoff set at the penalty threshold. The result shows that these large-scale electricity users who face the penalty because their power factor falls just short of the threshold are more likely to improve their power factor in the subsequent year, implying that the power factor correction policy implemented by Ghana’s government is effective.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3684 ◽  
Author(s):  
Chui Ying Lee ◽  
Samuel Lotsu ◽  
Moinul Islam ◽  
Yuichiro Yoshida ◽  
Shinji Kaneko

This paper investigates the economic impact of an energy efficiency improvement policy on electricity-intensive firms in Ghana. The policy imposed a penalty on these electricity-intensive firms, which are referred to as special load tariff (SLT) customers, when their power factor was below 90%. This paper applies the regression discontinuity design (RDD) to the panel data of these SLTs ranging from 1994 to 2012, excluding those years characterized by energy crisis. The results show adverse impacts of the policy on the employment and salary levels of the firms in the long run, in particular, the small- and medium–voltage firms. The results indicate that small- and medium–voltage firms are economically vulnerable to the penalty policy in the long run and recommend two policies to overcome this challenge. Firstly, the penalty for power factor improvement should not be imposed identically across firms with different voltage levels. Secondly, firms that satisfy the power factor standard should receive subsidies to improve their competitiveness in the market.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1540 ◽  
Author(s):  
Alexander Melnik ◽  
Kirill Ermolaev

Energy efficiency improvement in industrial companies is an essential prerequisite for the enhancement of their competitive positions in the national and global markets. Yet, the approaches currently employed in respect of the energy management do not fully utilize the innovative potential of energy technologies to achieve strategic goals. One way to further develop energy management is theoretical justification of the use of new approaches based on the suggested concept of the energy saving and energy efficiency processes’ positioning in the system of a company’s management priorities. In this article, we consider the applied use of the developed conceptual approach from the perspective of the energy saving and energy efficiency program development at the company. The main purpose of this paper is to justify the relations between energy management and strategic decision making in industrial companies. The results of the research conducted, firstly, make a certain contribution into the research of strategic multiple benefits of energy efficiency in a company; secondly, they expand understanding of the impact of energy saving and energy efficiency improvement on the achievement of operational, tactical and strategic results of the company’s activities; thirdly, they provide methodological decision support for the development of energy saving and energy efficiency programs taking into account the management and organizational barriers.


2018 ◽  
Vol 36 (4) ◽  
pp. 383-390 ◽  
Author(s):  
Nick French ◽  
Jason Antill

Purpose The purpose of this paper is to provide an insight into how the new energy efficiency legislation in the UK is impacting upon the valuation of certain properties. This paper looks at how to adapt implicit valuation models to reflect the new risks of the impact of legislation. Design/methodology/approach This practice briefing is an overview of the new legislation and comments on the appropriateness of valuation models in different scenarios. Findings This paper analyses the likelihood of capital and rental value changes under the new energy efficiency guidelines. Practical implications The role of the valuer in practice is to identify the impact of the new legislation on the value of the subject property and choose the correct model for the valuation task in hand. Originality/value This provides guidance on how valuations can be undertaken to reflect any impact of the new energy efficiency legislation.


2021 ◽  
pp. 1-28
Author(s):  
Bachir El Fil ◽  
Dhruv C. Hoysall ◽  
Srinivas Garimella

Abstract The impact of post-combustion carbon dioxide capture on the performance of a power plant is evaluated. A model of a coal power plant with post-combustion temperature swing adsorption CO2 capture using sorbent-loaded hollow fibers is presented. The resulting performance and cost of carbon capture are compared with those of other adsorption-based technologies. A parametric analysis of the performance of the power plant with respect to key parameters in the hollow fiber module operation is presented. It is found that electrical energy consumption for the compression of CO2 is a major parasitic load common to all absorption technologies and accounts for almost half of the total parasitic load. The effect of source temperature, flue gas fan and coupling fluid pump flow rates on overall system performance is presented. The impacts of different carbon capture technologies on the same coal-fired power plant are compared. Hollow fiber modules had the lowest parasitic load on the power plant, followed by KS-2 based carbon capture.


Author(s):  
Moncef Krarti ◽  
Ali Hajiah

In this paper, a detailed simulation-based analysis is conducted to assess the impact of adopting Daylight-Saving Time (DST) on the electrical energy use and peak demand in Kuwait. The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. The simulation results indicate that the adoption of DST has mixed impacts for Kuwait. While the commercial and the governmental sectors may benefit from the DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. The overall impact of the DST implementation is rather minimal with a slight increase energy use of about 0.07% and a slight reduction in peak demand of 0.14% or about 12 MW based on 2005 electrical peak demand for Kuwait.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 315
Author(s):  
A А. Aleksahin ◽  
A V Panchu ◽  
L A. Parkhomenko ◽  
H V. Bilovol

Requirements for increasing thermal efficiency heat exchangers, which lead to energy saving, material and reduction cost, and as a result of reducing the impact on the environment, led to the development and use of various methods of increasing heat transfer. These methods are called intensification of heat transfer processes. Intensification of heat and mass transfer processes is of great importance for making progress in improving the existing and creation of new energy and heat-exchange equipment. Among the ways of intensifying heat transfer, the swirling of flows of working media is one of the simplest and most common methods and is widely used in energy-intensive channels of nuclear power plants, heat exchangers, aeronautical and rocket and space equipment, chemical industry and other technical devices. We have proposed formulas to determine the cooling air velocity necessary to ensure the required temperature condition of the traction motor assemblies. Decrease in the power of fans in the cooling system using the artificial heat transfer intensification in the ducts was estimated based on the generalization of the results of calculations.  


2021 ◽  
Vol 2069 (1) ◽  
pp. 012172
Author(s):  
G Kiki ◽  
P André ◽  
A Houngan ◽  
C Kouchadé

Abstract The building represents one of the main actors of global warming of the planet because of the significant amounts of energy consumed. In Benin, 44,38% of electrical energy is consumed by office and service buildings. This is explained by the excessive use of air conditioning systems due to the lack of a thermal comfort index specific to the region. This work therefore focuses on assessing the impact of the choice of a thermal comfort model on the energy efficiency of buildings. For this purpose, an office building was chosen in the south of Benin and comfort surveys were conducted among the occupants. The model selected for this purpose is the adaptive model developed by López-Pérez and al. for air-conditioned buildings in humid tropical regions. Subsequently, a monitoring campaign of meteorological, hygrothermal and energetic data of the building was carried out during six months. The results obtained show that the average temperature of the offices (Tf ≈ 24°C) during the hours of occupancy is relatively lower than the comfort temperature determined with the model (Tc = 26.2°C). Moreover, the different simulations carried out under TRNSYS by substituting the office temperatures by the comfort temperature show a reduction of about 20% of the building’s energy consumption. This shows the importance of the comfort model of López-Pérez and al. in improving the energy efficiency of the building.


Sign in / Sign up

Export Citation Format

Share Document