scholarly journals Why bats matters: A critical assessment of Bat-Mediated Ecological Processes in the Neotropics

2020 ◽  
Vol 6 (1) ◽  
pp. 77-101
Author(s):  
Dennis Castillo-Figueroa

New World bats play a significant role in ecosystem functioning and are imperative for maintaining environmental services. Nevertheless, human-caused environmental changes are jeopardizing bat communities, which results in the loss of functional roles provided by them. It is important, therefore, to assess ecological processes performed by bats in the Neotropics to define priorities in further research for better conservation planning. In this systematic review, I identify general trends, advances, bias, and knowledge gaps in bat-mediated ecological processes across Neotropical ecosystems. I conducted an extensive search on Google scholar, Scopus, Web of science, and Bat Eco–Interactions Database resulting in 538 references, of which 185 papers were included in the review. The papers were published in 76 peer-reviewed journals, with the highest peak between 2006-2010. From the six biomes recorded, Moist broadleaf tropical forest was the most researched, contrary to Montane biomes (<2000 m), where few studies have been conducted. Seed dispersal was the process with more studies (44%), followed by pollination (38%), nutrient cycling (10%) and arthropod suppression (8%). Seed dispersal and pollination displayed large bias on specific bat-plant systems and ecoregions, thus being important to explore other bat and plant species as well as other ecosystems. Arthropod suppression and nutrient cycling were largely overlooked despite to constitute essential functions in ecosystem resilience; particularly, more research is needed to know cascading effects on plant fitness in different agroforestry systems, but also is key the understanding of how bats can be pivotal mobile links in terrestrial ecosystems and cave environments. I highlight the importance to consider bats with multiple roles and functional trait-based approach to gain a comprehensive understanding of their functionality. Bat extirpations are likely to affect their ecological roles, therefore, mitigating major threats of bats are urgently needed to sustain ecosystem integrity in the Neotropics. Even though functional studies have increased in the last two decades, several aspects of bat roles are still obscured and is necessary to keep evaluating their ecological and economic importance to provide useful information for major decision-makings in Neotropical ecosystems' conservation.

2021 ◽  
Vol 61 ◽  
pp. e20216124
Author(s):  
Dennis Castillo-Figueroa ◽  
Jairo Pérez-Torres

New World bats are involved in key ecological processes and are good indicators of environmental changes. Recently, trait-based approaches have been used in several taxa to better understand mechanisms underlying species assemblages, biotic interactions, environmental relationships and ecosystem functions. However, despite the relevance of bats on ecosystem dynamics, so far, there is no conceptual framework that relies on the measurement of bat traits to address functional studies. Here, we present a set of 50 bat biological traits, which are suitable to assess environmental stressors and can potentially affect ecological processes. Several examples were provided to show the applicability of this framework in the study of Neotropical bat ecology. We suggest some considerations regarding trait-based approach including the importance of intraspecific variation, correlations between traits, response-effect framework, global dataset, and future directions to assess the reliability of functional relations across species and Neotropical regions by using traits. This could be helpful in tackling ecological questions associated with community assembly and habitat filtering, species diversity patterns along environmental gradients, and ecological processes. We envision this paper as a first step toward an integrative bat functional trait protocol held up with solid evidence.


2015 ◽  
Vol 112 (35) ◽  
pp. 11120-11125 ◽  
Author(s):  
Steven J. Lade ◽  
Susa Niiranen ◽  
Jonas Hentati-Sundberg ◽  
Thorsten Blenckner ◽  
Wiebren J. Boonstra ◽  
...  

Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social–ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social–ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social–ecological models.


2018 ◽  
Vol 373 (1761) ◽  
pp. 20170435 ◽  
Author(s):  
Emma-Liina Marjakangas ◽  
Luísa Genes ◽  
Mathias M. Pires ◽  
Fernando A. S. Fernandez ◽  
Renato A. F. de Lima ◽  
...  

Trophic rewilding has been suggested as a restoration tool to restore ecological interactions and reverse defaunation and its cascading effects on ecosystem functioning. One of the ecological processes that has been jeopardized by defaunation is animal-mediated seed dispersal. Here, we propose an approach that combines joint species distribution models with occurrence data and species interaction records to quantify the potential to restore seed-dispersal interactions through rewilding and apply it to the Atlantic Forest, a global biodiversity hotspot. Using this approach, we identify areas that should benefit the most from trophic rewilding and candidate species that could contribute to cash the credit of seed-dispersal interactions in a given site. We found that sites within large fragments bearing a great diversity of trees may have about 20 times as many interactions to be cashed through rewilding as small fragments in regions where deforestation has been pervasive. We also ranked mammal and bird species according to their potential to restore seed-dispersal interactions if reintroduced while considering the biome as a whole and at finer scales. The suggested approach can aid future conservation efforts in rewilding projects in defaunated tropical rainforests. This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


Author(s):  
Deyan Ge ◽  
Anderson Feijó ◽  
Zhixin Wen ◽  
Alexei V Abramov ◽  
Liang Lu ◽  
...  

Abstract For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau (QHTP) was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


2012 ◽  
Vol 279 (1739) ◽  
pp. 2793-2799 ◽  
Author(s):  
Liping Liu ◽  
Kai Puolamäki ◽  
Jussi T. Eronen ◽  
Majid M. Ataabadi ◽  
Elina Hernesniemi ◽  
...  

We have recently shown that rainfall, one of the main climatic determinants of terrestrial net primary productivity (NPP), can be robustly estimated from mean molar tooth crown height (hypsodonty) of mammalian herbivores. Here, we show that another functional trait of herbivore molar surfaces, longitudinal loph count, can be similarly used to extract reasonable estimates of rainfall but also of temperature, the other main climatic determinant of terrestrial NPP. Together, molar height and the number of longitudinal lophs explain 73 per cent of the global variation in terrestrial NPP today and resolve the main terrestrial biomes in bivariate space. We explain the functional interpretation of the relationships between dental function and climate variables in terms of long- and short-term demands. We also show how the spatially and temporally dense fossil record of terrestrial mammals can be used to investigate the relationship between biodiversity and productivity under changing climates in geological time. The placement of the fossil chronofaunas in biome space suggests that they most probably represent multiple palaeobiomes, at least some of which do not correspond directly to any biomes of today's world.


2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


2018 ◽  
Vol 32 (5) ◽  
pp. 1379-1389 ◽  
Author(s):  
Hui Zhang ◽  
Han Y. H. Chen ◽  
Juyu Lian ◽  
Robert John ◽  
Li Ronghua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document