scholarly journals Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic

2016 ◽  
Vol 61 (No. 2) ◽  
pp. 45-54 ◽  
Author(s):  
Vejpustková Monika ◽  
Zahradník Daniel ◽  
Čihák Tomáš ◽  
Šrámek Vít
2020 ◽  
Vol 66 (No. 12) ◽  
pp. 607-615
Author(s):  
Maame Esi Hammond ◽  
Radek Pokorný

The study focused on the effects of gap size on natural regeneration of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) and micro-environmental soil conditions in gaps of different sizes under temperate mixed forest in the Czech Republic. Six gaps comprising two for small (≥ 200 m<sup>2</sup>), medium (≥ 500 m<sup>2</sup>) and big (≥ 900 m<sup>2</sup>) each were selected. Ten circular 1 m<sup>2</sup> subsampling plots were established at 2 m intervals along individual North-South-East-West transects, including one at the gap centre. Regeneration was monitored in 2014 and repeatedly in 2019. Soil conditions were only measured in 2019. Gap size was found to be a significant parameter for European beech natural regeneration in 2014. Besides, the quick occupation of European beech in gaps at natural beech zone provoked its prolific regeneration compared to Norway spruce in 2014. However, in 2019 the recent threat of weather variabilities was responsible for the general abysmal growth performance of natural regeneration. Division of gap microsites into different within-gap positions based on prevailing light or shade conditions was helpful in assessing the significant variations of soil conditions within-gap positions and among gap sizes. Soil temperature and moisture significantly influenced the regeneration of European beech and Norway spruce, respectively.  


2016 ◽  
Vol 62 (No. 7) ◽  
pp. 293-305 ◽  
Author(s):  
D. Bulušek ◽  
Z. Vacek ◽  
S. Vacek ◽  
J. Král ◽  
L. Bílek ◽  
...  

2020 ◽  
Vol 73 (1) ◽  
pp. 64-76
Author(s):  
Dagmar Zádrapová ◽  
Jiří Korecký ◽  
Jakub Dvořák ◽  
Zuzana Faltinová ◽  
Jan Bílý

Abstract European beech (Fagus sylvatica L.) is one of the most important broadleaved tree species in Europe both ecologically and economically. Nowadays, in the Czech Republic, beech is underrepresented in forest tree species composition, and there are tendencies to increase its proportion. When reintroducing beech, genetic variability, along with other factors, play a key role. The main aim of this study was to evaluate the genetic diversity of ten selected indigenous beech populations across the Czech Republic. Two hundred and fifty individuals were genotyped on 21 polymorphic nuclear microsatellite markers, which were amplified using two newly assembled multiplexes. According to the results, observed heterozygosity (Ho ) among populations ranged from 0.595 to 0.654 and expected heterozygosity (He ) from 0.650 to 0.678. That is comparable with the findings in other European studies. The high discriminatory power of the assembled multiplexes was confirmed by calculating the Probability of Identity among both unrelated and related individuals. Principal Coordinate Analysis (PCoA) based on Nei's genetic distances revealed that there are genetic differences among populations resulting in three approximate clusters (geographically north, south-east, and south-west). Nevertheless, the results implicate that on a geographical scale of the Czech Republic, the distance is unlikely to be the primary driver of genetic differentiation.


2017 ◽  
Vol 63 (No. 2) ◽  
pp. 53-61 ◽  
Author(s):  
Cvrčková Helena ◽  
Máchová Pavlína ◽  
Poláková Lucie ◽  
Trčková Olga

Fagus sylvatica Linnaeus (European beech), the ecologically and economically most important broadleaved tree species in the Czech Republic, was strongly reduced in the past. Today there are efforts to increase the proportion of beech to ensure optimal forest tree species composition. When extensively reintroducing beech, it is important to acquire more detailed knowledge of genetic diversity. Thirteen important beech populations in different stands in the territory of the Czech Republic were genotyped using 12 polymorphic nuclear microsatellite markers. The genotypic data from adult trees imply genetic differences between the populations. The estimated genetic diversity expressed as Shannon’s information index ranged from 1.73 to 1.92. Thirteen beech populations showed excess homozygotes, as indicated by positive fixation index (F) values (F = 0.005–0.115). The pairwise F<sub>ST</sub> values indicated low genetic differentiation between the 13 Czech beech populations, because they were greater than zero, that means they confirmed the presence of population structuring in Czech European beech. Not significant linear correlations were observed between genetic and geographic distances of the 13 beech populations studied on the basis of microsatellite markers. Twelve microsatellite markers were verified as highly polymorphic and suitable for genotyping of European beech populations.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Sign in / Sign up

Export Citation Format

Share Document