scholarly journals A modified technique for treating swimmer puppy syndrome

2018 ◽  
Vol 63 (No. 4) ◽  
pp. 161-167
Author(s):  
DE Karcher ◽  
RC Costa ◽  
TC Prada ◽  
PC Moraes ◽  
LA Ramon ◽  
...  

Swimmer puppy syndrome is an unusual anomaly that affects dogs within the first few days or months of life. This syndrome is characterised by the inability of the animal to maintain a quadrupedal position primarily using the pelvic limbs. In some cases, the condition may also affect the thoracic limbs. Although the exact pathophysiology of this condition remains uncertain, plausible causes include alterations in the neuromuscular synapse, improper myelination or poor development of peripheral motor neurons, delayed muscle development or ventral horn neuropathy. Here, we describe our results using a modified technique for the treatment of swimmer puppy syndrome, based on immobilisation for a period of one to four weeks with the aid of microporous hypoallergenic tapes, plasters and elastic meshes. Our modified method showed clear evidence of improvements.

Author(s):  
Darcy B. Kelley ◽  
Martha L. Tobias ◽  
Mark Ellisman

Brain and muscle are sexually differentiated tissues in which masculinization is controlled by the secretion of androgens from the testes. Sensitivity to androgen is conferred by the expression of an intracellular protein, the androgen receptor. A central problem of sexual differentiation is thus to understand the cellular and molecular basis of androgen action. We do not understand how hormone occupancy of a receptor translates into an alteration in the developmental program of the target cell. Our studies on sexual differentiation of brain and muscle in Xenopus laevis are designed to explore the molecular basis of androgen induced sexual differentiation by examining how this hormone controls the masculinization of brain and muscle targets.Our approach to this problem has focused on a highly androgen sensitive, sexually dimorphic neuromuscular system: laryngeal muscles and motor neurons of the clawed frog, Xenopus laevis. We have been studying sex differences at a synapse, the laryngeal neuromuscular junction, which mediates sexually dimorphic vocal behavior in Xenopus laevis frogs.


2011 ◽  
Vol 14 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Kalil G. Abdullah ◽  
Amy S. Nowacki ◽  
Michael P. Steinmetz ◽  
Jeffrey C. Wang ◽  
Thomas E. Mroz

Object The C-7 lateral mass has been considered difficult to fit with instrumentation because of its unique anatomy. Of the methods that exist for placing lateral mass screws, none particularly accommodates this anatomical variation. The authors have related 12 distinct morphological measures of the C-7 lateral mass to the ability to place a lateral mass screw using the Magerl, Roy-Camille, and a modified Roy-Camille method. Methods Using CT scans, the authors performed virtual screw placement of lateral mass screws at the C-7 level in 25 male and 25 female patients. Complications recorded included foraminal and articular process violations, inability to achieve bony purchase, and inability to place a screw longer than 6 mm. Violations were monitored in the coronal, axial, and sagittal planes. The Roy-Camille technique was applied starting directly in the middle of the lateral mass, as defined by Pait's quadrants, with an axial angle of 15° lateral and a sagittal angle of 90°. The Magerl technique was performed by starting in the inferior portion of the top right square of Pait's quadrants and angling 25° laterally in the axial plane with a 45° cephalad angle in the sagittal plane. In a modified method, the starting point is similar to the Magerl technique in the top right square of Pait's quadrant and then angling 15° laterally in the axial plane. In the sagittal plane, a 90° angle is taken perpendicular to the dorsal portion of the lateral mass, as in the traditional Roy-Camille technique. Results Of all the morphological methods analyzed, only a combined measure of intrusion of the T-1 facet and the overall length of the C-7 lateral mass was statistically associated with screw placement, and only in the Roy-Camille technique. Use of the Magerl technique allowed screw placement in 28 patients; use of the Roy-Camille technique allowed placement in 24 patients; and use of the modified technique allowed placement in 46 patients. No screw placement by any method was possible in 4 patients. Conclusions There is only one distinct anatomical ratio that was shown to affect lateral mass screw placement at C-7. This ratio incorporates the overall length of the lateral mass and the amount of space occupied by the T-1 facet at C-7. Based on this virtual study, a modified Roy-Camille technique that utilizes a higher starting point may decrease the complication rate at C-7 by avoiding placement of the lateral mass screw into the T1 facet.


Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 533-543 ◽  
Author(s):  
K. Broadie ◽  
M. Bate

We have examined the role of innervation in directing embryonic myogenesis, using a mutant (prospero), which delays the pioneering of peripheral motor nerves of the Drosophila embryo. In the absence of motor nerves, myoblasts fuse normally to form syncytial myotubes, myotubes form normal attachments to the epidermis, and a larval musculature comparable to the wild-type pattern is generated and maintained. Likewise, the twist-expressing myoblasts that prefigure the adult musculature segregate normally in the absence of motor nerves, migrate to their final embryonic positions and continue to express twist until the end of embryonic development. In the absence of motor nerves, myotubes uncouple at the correct developmental stage to form single cells. Subsequently, uninnervated myotubes develop the mature electrical and contractile properties of larval muscles with a time course indistinguishable from normally innervated myotubes. We conclude that innervation plays no role in the patterning, morphogenesis, maintenance or physiological development of the somatic muscles in the Drosophila embryo.


Author(s):  
Viviana Pérez ◽  
Francisca Bermedo-Garcia ◽  
Diego Zelada ◽  
Felipe A. Court ◽  
Miguel Ángel Pérez ◽  
...  

Abstract The coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75NTR pan-neurotrophin receptor. Even though p75NTR targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75NTR inhibition at the mature neuromuscular junction have not been elucidated. We performed quantitative neuroanathomical analyses of the neuromuscular junction in p75NTR null mice by laser confocal and electron microscopy, which were complemented with electromyography, locomotor tests, and pharmacological intervention studies. Mature neuromuscular synapses of p75NTR null mice show impaired postsynaptic organization and ultrastructural complexity, which correlate with altered synaptic function at the levels of nerve activity-induced muscle responses, muscle fiber structure, force production, and locomotor performance. Our results on primary myotubes and denervated muscles indicate that muscle-derived p75NTR does not play a major role on postsynaptic organization. In turn, motor axon terminals of p75NTR null mice display a strong reduction in the number of synaptic vesicles and active zones. According to the observed pre and postsynaptic defects, pharmacological acetylcholinesterase inhibition rescued nerve-dependent muscle response and force production in p75NTR null mice. Our findings revealing that p75NTR is required to organize mature neuromuscular junctions contribute to a comprehensive view of the possible effects caused by therapeutic attempts to target p75NTR.


2019 ◽  
Vol 33 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Kazu Kobayakawa ◽  
Kyleigh Alexis DePetro ◽  
Hui Zhong ◽  
Bau Pham ◽  
Masamitsu Hara ◽  
...  

Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.


2020 ◽  
Author(s):  
Peter J. Ulintz ◽  
Jacqueline Larouche ◽  
Mahir Mohiuddin ◽  
Jesus Castor Macias ◽  
Sarah J. Kurpiers ◽  
...  

AbstractDuring aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function in that impacts mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs), but the relationship between MuSCs and neural control has not been established. Herein, using a combination of single-cell transcriptomic analysis, high-resolution immunofluorescence imaging and transgenic young and aged mice as well as from mice with neuromuscular degeneration (Sod1-/-), a compensatory neuro-responsive function for a subset of MuSCs was identified. Genetic rescue of motor neurons in Sod1-/- mice reduced this subset of MuSCs and restored integrity of the neuromuscular junction (NMJ) in a manner akin to young muscle. Administration of severe neuromuscular trauma induced young MuSCs to specifically engraft in a position proximal to the NMJ but in aging, this behavior was abolished. Contrasting the expression programs of young and aged MuSCs after muscle injury at the single cell level, we observed distinctive gene expression programs between responses to neuro-muscular degeneration and muscle trauma. Collectively, these data reveal MuSCs sense synaptic perturbations during aging and neuro-muscular deterioration, and can exert support for the NMJ, particularly in young muscle.HighlightsTranscriptional landscapes of single satellite cells from different ages before and after injury as well as neurodegenerative models before and after nervous rescueA population of satellite cells reside in close proximity to neuromuscular synapse, which are lost with ageDenervation promotes satellite cell engraftment into post-synaptic regions of young as opposed to aged muscle


2021 ◽  
Vol 15 ◽  
Author(s):  
Dongsheng Xu ◽  
Ling Zou ◽  
Wenjie Zhang ◽  
Jieying Liao ◽  
Jia Wang ◽  
...  

ObjectiveThis study aimed to investigate the sensory and motor innervation of “Taichong” (LR3) and “Ququan” (LR8) in the rat and provide an insight into the neural relationship between the different acupoints in the same meridian.MethodsThe LR3 and LR8 were selected as the representative acupoints from the Liver Meridian and examined by using the techniques of regional anatomy and neural tract tracing in this study. For both acupoints, their local nerves were observed with regional anatomy, and their sensory and motor pathways were traced using neural tract tracing with single cholera toxin subunit B (CTB) and dual Alexa Fluor 594/488 conjugates with CTB (AF594/488-CTB).ResultsUsing the regional anatomy, the branches of the deep peroneal nerve and saphenous nerve were separately found under the LR3 and LR8. Using single CTB, the sensory neurons, transganglionic axon terminals, and motor neurons associated with both LR3 and LR8 were demonstrated on the dorsal root ganglia (DRG), spinal dorsal horn, Clarke’s nucleus, gracile nucleus, and spinal ventral horn corresponding to their own spinal segments and target regions, respectively. Using dual AF594/488-CTB tracing, it was shown that the sensory and motor neurons associated with LR3 were separated from that of LR8.ConclusionThis study demonstrates that LR3 and LR8 are innervated by different peripheral nerves, which originated from or terminated in their corresponding spinal segments and target regions independently through the sensory and motor pathways. These results provide an example for understanding the differential innervation between the different acupoints in the same meridian.


2016 ◽  
Vol 49 (03) ◽  
pp. 378-383 ◽  
Author(s):  
Jagannath Kamath ◽  
Trivikram Shenoy ◽  
Nikil Jayasheelan ◽  
Naufal Rizwan ◽  
Vartika Sachan ◽  
...  

ABSTRACT Introduction: Wide awake surgery of the hand (WASH) is a well-accepted technique in hand surgery which allows the surgeon to identify and rectify on the table of some of the inadvertent shortcomings in the surgical procedures to optimise the final outcome. The advantage, however, precludes the use of tourniquet. We describe a modified method which preserves all the advantages of WASH and allows the surgeon to use tourniquet. Patients and Methods: Thirty-one cases of hand surgeries were carried out using the modified technique where a wrist block was supplemented with the ultra-short acting intravenous propofol which allowed the surgeon to use the upper arm tourniquet. The propofol infusion was stopped, and the tourniquet was released after the important surgical step. Within an average of 10 min of stoppage of the infusion, all the patients were awake for active intraoperative painless movements to aid the surgeon to identify, rectify and fine tune the procedure to optimise the results. Results: Five of the 31 patients needed correction based on the intraoperative movements. All the 31 patients were pain free at the surgical site during surgery. All the 31 patients were cooperative enough to perform full range of pain-free intraoperative movements. No patient experienced significant tourniquet pain during the procedure. Patient’s and surgeon’s satisfaction at the end of the procedure has been quite satisfactory. Conclusion: Timed wake-up anaesthesia, an improvement over the original WASH, has been suggested where the surgeon can add without subtracting the benefits of the procedure in the form of usage of the tourniquet providing the clear tissue plane and haemostasis during the surgery. However, an additional cost is incurred for the use of anaesthesia and equipment should be kept in mind.


Author(s):  
Harvey B. Sarnat

ABSTRACT:Vastus lateralis muscle biopsies of four unrelated male neonates showing myotubular (i.e. centronuclear) myopathy (MM) were compared with muscle from four human fetuses in the myotubular stage of development, a 31 week preterm infant and four term neonates. The perimysium, blood vessels, spindles, myelinated intramuscular nerves, and motor end-plates in MM are as well developed as in term neonatal muscle. The cytoarchitecture of myofibres in MM is more mature than that of fetal myotubes in the spacing of central nuclei, Z-band registry, development of the sarcotubular system, and in the condensation of nuclear chromatin and nucleoli. Triads in MM may retain an immature oblique or longitudinal orientation. Myofibrillar ATPase shows normal differentiation of fibre types, consistent with nonnal innervation. Spinal motor neurons are nonnal in number and in RNA fluorescence. Immunoreactivity for vimentin and desmin in myofibres of MM is uniformly strong, as in fetal myotubes and unlike mature neonatal muscle. Maternal muscle biopsies of two cases also showed scattered small centronuclear myofibres reactive for vimentin and desmin. The arrest in morphogenesis of fibre architecture in MM is not a general arrest in muscle development. Persistence of fetal cytoskeletal proteins that preserve the immature central positions of nuclei and mitochondria may be important in pathogenesis. Vimentin/desmin studies of the infant and maternal muscle biopsies are useful in establishing the diagnosis.


Sign in / Sign up

Export Citation Format

Share Document