scholarly journals Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China

2010 ◽  
Vol 56 (No. 2) ◽  
pp. 87-97 ◽  
Author(s):  
X.B. Liu ◽  
X.Y. Zhang ◽  
Y.X. Wang ◽  
Y.Y. Sui ◽  
S.L. Zhang ◽  
...  

Soil degradation that results from erosion, losses of organic matter and nutrients, or soil compaction are of great concern in every agricultural region of the world. The control of soil erosion and loss of organic matter has been proposed as critical to agricultural and environmental sustainability of Northeast China. This region is bread basket of China where the fertile and productive soils, Mollisols (also called Black soils), are primarily distributed. In this paper, we introduce the importance of Northeast China’s grain production to China, and describe the changes of sown acreage and grain production in past decades. This paper also summarizes the distribution, area and intensity of water erosion, changes in the number of gullies and gully density, thickness of top soil layer, soil organic matter content, bulk density, field water holding capacity, and infiltration rates; the number of soil microorganism and main enzyme activities from soil erosion in the region are also summarized. The moderately and severely water-eroded area accounted for 31.4% and 7.9% of the total, and annual declining rate is 1.8%. Erosion rate is 1.24–2.41 mm/year, and soil loss in 1°, 5° and 15° sloping farmlands is 3 t/ha/year, 78 t/ha/year and 220.5 t/ha/year, respectively. SOC content of uncultivated soil was nearly twice that of soil with a 50-year cultivation history, and the average annual declining rate of soil organic matter was 0.5%. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Proposed strategies for erosion control, in particular how tillage management, terraces and strip cultivation, or soil amendments contribute to maintain or restore the productivity of severely eroded farmland, are discussed in the context of agricultural sustainability with an emphasis on the Chinese Mollisols.

2021 ◽  
Author(s):  
Carla S. S. Ferreira ◽  
Samaneh Seifollahi-Aghmiuni ◽  
Georgia Destouni ◽  
Marijana Solomun ◽  
Navid Ghajarnia ◽  
...  

<p>Soil supports life on Earth and provides several goods and services of essence for human wellbeing. Over the last century, however, intensified human activities and unsustainable management practices, along with ongoing climate change, have been degrading soils’ natural capital, pushing it towards possible critical limits for its ability to provide essential ecosystem services. Soil degradation is characterized by negative changes in soil health status that may lead to partial or total loss of productivity and overall capacity to support human societies, e.g., against increasing climate risks. Such degradation leads to environmental, social and economic losses, which may in turn trigger land abandonment and desertification. In particular, the Mediterranean region has been identified as one of the most vulnerable and severely affected European regions by soil degradation, where the actual extent and context of the problem is not yet well understood. This study provides an overview of current knowledge about the status of soil degradation and its main drivers and processes in the European Mediterranean region, based on comprehensive literature review. In the Mediterranean region, 34% of the land area is subject to ‘very high sensitivity’ or ‘high sensitivity’ to desertification, and risk of desertification applies to over more than 65% of the territory of some countries, such as Spain and Cyprus (IPCC, 2019). The major degradation processes are: (i) soil erosion, due to very high erosion rates (>2 t/ha); (ii) loss of soil organic matter, due to high mineralization rates while the region is already characterized by low or very low soil organic matter (<2%); and (iii) soil and water salinisation, due to groundwater abstraction and sea water intrusion. However, additional physical, chemical and biological degradation processes, such as soil sealing and compaction, contamination, and loss of biodiversity, are also of great concern. Some of the degradation processes, such as soil erosion, have been extensively investigated and their spatial extent is relatively well described. Other processes, however, such as soil biodiversity, are poorly investigated and have limited data availability. In general, a lack of systematic inventories of soil degradation status limits the overall knowledge base and impairs understanding of the spatial and temporal dimensions of the problem. In terms of drivers, Mediterranean soil degradation has mainly been driven by increasing population, particularly in coastal areas, and its concentration in urban areas (and consequent abandonment of rural areas), as well as by land-use changes and intensification of socio-economic activities (e.g. agriculture and tourism). Additionally, climate change, with increasing extent and severity of extreme events (droughts, floods, wildfires), may also be a key degradation driver in this region. Improved information on soil degradation status (including spatio-temporal extent and severity) and enhanced knowledge of degradation drivers, processes and socio-economic, ecological, and biodiversity impacts are needed to better support regional soil management, policy, and decision making. Science and evidence based improvements of soil resource governance and management can enhance soil resilience to regional and global changes, and support the region to achieve related Sustainable Development Goals and the Land Degradation Neutrality targets.</p>


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanmin Yao ◽  
Liming Ye ◽  
Huajun Tang ◽  
Pengqin Tang ◽  
Deying Wang ◽  
...  

AbstractSoil organic matter (SOM) content is one of the most important indicators of soil quality and hence the productive capacity of soils. Northeast China (NEC) is the most important region in grain production in China. In this study,we assessed the spatiotemporal change of cropland SOM content in NEC using sampling data of 2005 and survey data of 1985. We also analysed the driving forces behind the SOM content change. Our results showed that SOM content decreased in 39% of all the cropland in NEC, while increase in SOM content was only detected on 16% of the cropland. SOM remained unchanged in nearly half (i.e. 45%) of the cropland. Our results also revealed that cropping intensity and fertilizer application were the two most important factors driving SOM change. Overall, results from this research provided novel details of the spatiotemporal patterns of cropland SOM content change in NEC which was not revealed in earlier assessments. The datasets presented here can be used not only as baselines for the calibration of process-based carbon budget models, but also to identify regional soil quality hotspots and to guide spatial-explicit soil management practices.


2014 ◽  
Vol 484-485 ◽  
pp. 127-131
Author(s):  
Han Zheng Kong ◽  
Ju Sheng Jiang ◽  
Zong Bo Peng ◽  
Yu Jie Zhou

In this paper, we take secondary forest, orchard, and woodland soils of rubber in different planting years as a research subject and analyze the influence of different land use on soil organic matter. The results show that land use has significant influence on soil organic matter components (p <0.01). We conducted a survey and sampling on 10 age classes of Hainan Dongfang Daguangba (3, 8, 13, 18,23,29,33,35,38,42 years old) rubber plantation plots soil layer (0 cm-20 cm, 20 cm-40 cm), and conducted in-house testing analysis of its organic matter content, and achieved preliminary exploration that soil organic matter content of different land use patterns in Dongfang City in Hainan: secondary forest> orchard> rubber plantation. These differences are mainly due to the litter under different tillage quantity, quality and variety of management measures. While orchards and rubber plantation have used different tillage method, as a plantation by human, it was greatly influenced by human.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Marianne Ruidisch ◽  
Sebastian Arnhold ◽  
Bernd Huwe ◽  
Christina Bogner

Non-sustainable agricultural practices can alter the quality of soil and water. A sustainable soil management requires detailed understanding of how tillage affects soil quality, erosion, and leaching processes. Agricultural soils in the Haean catchment (South Korea) are susceptible to erosion by water during the monsoon. For years, erosion-induced losses have been compensated by spreading allochthonous sandy material on the fields. These anthropogenically modified soils are used for vegetable production, and crops are cultivated in ridges using plastic mulches. To evaluate whether the current practice of ridge cultivation is sustainable with regard to soil quality and soil and water conservation, we (i) analysed soil properties of topsoils and (ii) carried out dye tracer experiments. Our results show that the sandy topsoils have a very low soil organic matter content and a poor structure and lack soil burrowers. The artificial layering induced by spreading sandy material supported lateral downhill water flow. Ridge tillage and plastic mulching strongly increased surface runoff and soil erosion. We conclude that for this region a comprehensive management plan, which aims at long-term sustainable agriculture by protecting topsoils, increasing soil organic matter, and minimizing runoff and soil erosion, is mandatory for the future.


2012 ◽  
Vol 524-527 ◽  
pp. 2152-2155
Author(s):  
Shu Li Wang ◽  
Xue Mei Li ◽  
Wei Bin Yuan

The dynamics of the litter and soil organic matter content of four densities (A: 2500/hm2,B:3300/hm2,C:4400/hm2,D:6600/hm2) of hybrid Larch plantations were studied in Jiangshanjiao forest farm of Heilongjiang province of China. (1) The annual litter stock under the hybrid Larch plantation was 4634.6 ~ 5453.4 kg/hm2, and the decreased order of the annual litter stock was under density of 4400, 3300 2500and 6600 trees per hectare. The decrease order of the litter stock no matter undecomposition and decomposition litter was under density of 3300, 4400, 2500 and 6600 trees per hectare, and the rate of the undecomposition litter stock to total litter stock was bigger than 50 %. (2) The seasonal dynamic of the soil organic matter under different densities of plantations basically had the same principle. In 0~10 cm soil layer, the soil organic matter was higher in June and August, was lower in May and July, and was flat or increased slightly in September, but was decreased in September under the plantations with density 4400 and 3300 trees per hectare. The soil organic matter in 10~20 cm and 20~40 cm layer had the same change principle, but the change range was flat and smooth. For the same density of plantation, the difference of the organic matter in the same soil layer between the different months was significantly (P < 0.05). (3) The difference of the soil organic matter content in the same soil layer under different densities of hybrid Larch plantation was significantly, and the decreased order of the soil organic matter in average was under density 4400, 3300, 6600 and 2500 trees per hectare. The results would provide the theories basis for manage the hybrid Larch plantations.


2008 ◽  
Vol 5 (5) ◽  
pp. 4107-4127 ◽  
Author(s):  
M.-T. Sebastià ◽  
E. Marks ◽  
R. M. Poch

Abstract. In western Africa, soil organic matter is a source of fertility for food provision and a tool for climate mitigation. In the Savannah region, strong soil degradation linked to an increase in population threatens organic matter conservation and agricultural yield. Soil degradation is also expected to impact biodiversity and, with it, increase the vulnerability of ecosystem goods and services, including the storage of soil organic carbon. Studies of land use, plant species composition and soil fertility were conducted for a conservation project at a demonstration farm in Northern Togo (West Africa), host to various management regimes. Results showed a low organic matter content of the surface soil horizons, often around 0.5%. The highest values were found in a sacred forest within the farm (2.2%). Among crops, rice had the highest soil organic matter, around 1%. In a survey of grasslands, pastures showed the highest organic matter content, with vegetation composition differing from grazed fallows and abandoned grasslands. Plant species richness showed a positive relationship with soil organic matter (R2adj=41.2%), but only by the end of the wet season, when species richness was also highest. Sampling date had a strong effect on vegetation composition. Results showed a strong influence of human activity on soil formation and distribution, and also on plant diversity. The soil characteristics found under the permanent forest suggest a high potential of the soils of the region for improvement of both agricultural yields and as a potential carbon sink relevant to global change policies.


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


Sign in / Sign up

Export Citation Format

Share Document