Status, processes, and drivers of soil degradation in the Mediterranean region

Author(s):  
Carla S. S. Ferreira ◽  
Samaneh Seifollahi-Aghmiuni ◽  
Georgia Destouni ◽  
Marijana Solomun ◽  
Navid Ghajarnia ◽  
...  

<p>Soil supports life on Earth and provides several goods and services of essence for human wellbeing. Over the last century, however, intensified human activities and unsustainable management practices, along with ongoing climate change, have been degrading soils’ natural capital, pushing it towards possible critical limits for its ability to provide essential ecosystem services. Soil degradation is characterized by negative changes in soil health status that may lead to partial or total loss of productivity and overall capacity to support human societies, e.g., against increasing climate risks. Such degradation leads to environmental, social and economic losses, which may in turn trigger land abandonment and desertification. In particular, the Mediterranean region has been identified as one of the most vulnerable and severely affected European regions by soil degradation, where the actual extent and context of the problem is not yet well understood. This study provides an overview of current knowledge about the status of soil degradation and its main drivers and processes in the European Mediterranean region, based on comprehensive literature review. In the Mediterranean region, 34% of the land area is subject to ‘very high sensitivity’ or ‘high sensitivity’ to desertification, and risk of desertification applies to over more than 65% of the territory of some countries, such as Spain and Cyprus (IPCC, 2019). The major degradation processes are: (i) soil erosion, due to very high erosion rates (>2 t/ha); (ii) loss of soil organic matter, due to high mineralization rates while the region is already characterized by low or very low soil organic matter (<2%); and (iii) soil and water salinisation, due to groundwater abstraction and sea water intrusion. However, additional physical, chemical and biological degradation processes, such as soil sealing and compaction, contamination, and loss of biodiversity, are also of great concern. Some of the degradation processes, such as soil erosion, have been extensively investigated and their spatial extent is relatively well described. Other processes, however, such as soil biodiversity, are poorly investigated and have limited data availability. In general, a lack of systematic inventories of soil degradation status limits the overall knowledge base and impairs understanding of the spatial and temporal dimensions of the problem. In terms of drivers, Mediterranean soil degradation has mainly been driven by increasing population, particularly in coastal areas, and its concentration in urban areas (and consequent abandonment of rural areas), as well as by land-use changes and intensification of socio-economic activities (e.g. agriculture and tourism). Additionally, climate change, with increasing extent and severity of extreme events (droughts, floods, wildfires), may also be a key degradation driver in this region. Improved information on soil degradation status (including spatio-temporal extent and severity) and enhanced knowledge of degradation drivers, processes and socio-economic, ecological, and biodiversity impacts are needed to better support regional soil management, policy, and decision making. Science and evidence based improvements of soil resource governance and management can enhance soil resilience to regional and global changes, and support the region to achieve related Sustainable Development Goals and the Land Degradation Neutrality targets.</p>

2010 ◽  
Vol 56 (No. 2) ◽  
pp. 87-97 ◽  
Author(s):  
X.B. Liu ◽  
X.Y. Zhang ◽  
Y.X. Wang ◽  
Y.Y. Sui ◽  
S.L. Zhang ◽  
...  

Soil degradation that results from erosion, losses of organic matter and nutrients, or soil compaction are of great concern in every agricultural region of the world. The control of soil erosion and loss of organic matter has been proposed as critical to agricultural and environmental sustainability of Northeast China. This region is bread basket of China where the fertile and productive soils, Mollisols (also called Black soils), are primarily distributed. In this paper, we introduce the importance of Northeast China’s grain production to China, and describe the changes of sown acreage and grain production in past decades. This paper also summarizes the distribution, area and intensity of water erosion, changes in the number of gullies and gully density, thickness of top soil layer, soil organic matter content, bulk density, field water holding capacity, and infiltration rates; the number of soil microorganism and main enzyme activities from soil erosion in the region are also summarized. The moderately and severely water-eroded area accounted for 31.4% and 7.9% of the total, and annual declining rate is 1.8%. Erosion rate is 1.24–2.41 mm/year, and soil loss in 1°, 5° and 15° sloping farmlands is 3 t/ha/year, 78 t/ha/year and 220.5 t/ha/year, respectively. SOC content of uncultivated soil was nearly twice that of soil with a 50-year cultivation history, and the average annual declining rate of soil organic matter was 0.5%. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Proposed strategies for erosion control, in particular how tillage management, terraces and strip cultivation, or soil amendments contribute to maintain or restore the productivity of severely eroded farmland, are discussed in the context of agricultural sustainability with an emphasis on the Chinese Mollisols.


Author(s):  
A. Cilek ◽  
S. Berberoglu ◽  
M. Kirkby ◽  
B. Irvine ◽  
C. Donmez ◽  
...  

The Mediterranean region is particularly prone to erosion. This is because it is subject to long dry periods followed by heavy bursts of erosive rainfall, falling on steep slopes with fragile soils, resulting in considerable amounts of erosion. In parts of the Mediterranean region, erosion has reached a stage of irreversibility and in some places erosion has practically ceased because there is no more soil left. With a very slow rate of soil formation, any soil loss of more than 1 t ha<sup>−1</sup> yr<sup>−1</sup> can be considered as irreversible within a time span of 50-100 years. The objectives of this study were i) to estimate the temporal and spatial distribution of soil erosion under climate change scenarios in study area ii) to assess the hydrological runoff processes. <br><br> In this study, climate data, land use, topographic and physiographic properties were assembled for Egribuk Subcatchment at Seyhan River Basin in Turkey and used in a process-based Geographical Information System (GIS) to determine the hydrological sediment potential and quantify reservoir sedimentation. The estimated amount of sediment transported downstream is potentially large based on hydrological runoff processes using the Pan-European Soil Erosion Risk Assessment (PESERA) model. The detailed model inputs included 128 variables derived mainly from, soil, climate, land use/cover, topography data sets. The outcomes of this research were spatial and temporal distribution of erosion amount in t ha<sup>−1</sup> yr<sup>−1</sup> or month<sup>−1</sup>.


2017 ◽  
Vol 63 (2) ◽  
pp. 74-85
Author(s):  
Jozef Kobza ◽  
Gabriela Barančíková ◽  
Jarmila Makovníková ◽  
Boris Pálka ◽  
Ján Styk ◽  
...  

Abstract Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

&lt;p&gt;Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3&amp;#176;C), atmospheric CO&lt;sub&gt;2&lt;/sub&gt;-concentration (eCO&lt;sub&gt;2&lt;/sub&gt;: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO&lt;sub&gt;2&lt;/sub&gt;: +3&amp;#176;C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, &gt; 250 &amp;#181;m), micro-aggregates (miA, 63 &amp;#181;m &amp;#8211; 250 &amp;#181;m) and free silt &amp; clay (sc, &lt; 63 &amp;#181;m). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of &amp;#961; = 1.6 g*cm&lt;sup&gt;-3&lt;/sup&gt;, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt &amp; clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO&lt;sub&gt;2&lt;/sub&gt; and eT x eCO&lt;sub&gt;2 &lt;/sub&gt;plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO&lt;sub&gt;2 &lt;/sub&gt;treatment. Total soil C and N did not significantly change with treatments.&amp;#160; eCO&lt;sub&gt;2&lt;/sub&gt; decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO&lt;sub&gt;2&lt;/sub&gt; fumigation treatment. This significantly differed between size classes and density fractions (p &lt; 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.&amp;#160;&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


2022 ◽  
Vol 14 (2) ◽  
pp. 348
Author(s):  
Yashon O. Ouma ◽  
Lone Lottering ◽  
Ryutaro Tateishi

This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better that the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.


2021 ◽  
Vol 869 (1) ◽  
pp. 012016
Author(s):  
V Mandhalika ◽  
A B Sambah ◽  
D O Sutjipto ◽  
F Iranawati ◽  
M A Z Fuad ◽  
...  

Abstract Fisheries has a major contribution for the Indonesian economy both on a local and national scale. However, the phenomenon of climate change can threaten the sustainability of this sector. Therefore, a scientific approach is needed to determine the level of risk and adaptation strategies for fisheries, one of which is through vulnerability analysis. Vulnerability is the final analysis resulted from the analysis of sensitivity and exposure. Both of these analyses are important to determine the parameters that will affect the value of the fishery vulnerability to climate change. This research is focused on sensitivity and exposure analysis with the coverage limit is the province area to determine the sensitivity and exposure index that exists in the study area. The result will be important input in further research for the vulnerability of capture fisheries to climate change. Three provinces in Indonesia were selected through purposive sampling method. The source of data for indices variables were using recorded data in 2009-2020 from relevant sources. Result described that SST variability in the three provinces has the same pattern. In the exposure analysis, the SST is linked to the catch resulting in different exposure statuses in each province. It also illustrated those areas with a very high number of fishermen and catches will have very high sensitivity. The research will support in the sustainable management of capture fish at the province scale.


2015 ◽  
Vol 12 (8) ◽  
pp. 8459-8504 ◽  
Author(s):  
M. Fader ◽  
S. Shi ◽  
W. von Bloh ◽  
A. Bondeau ◽  
W. Cramer

Abstract. Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

&lt;p&gt;Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.&lt;/p&gt;&lt;p&gt;This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document