scholarly journals Isolation and characterization of polymorphic microsatellite markers in Toxicodendron vernicifluum

2018 ◽  
Vol 54 (No. 1) ◽  
pp. 17-25 ◽  
Author(s):  
D.-D. Vu ◽  
T.T.-X. Bui ◽  
T.H.-N. Nguyen ◽  
S.N.M. Shah ◽  
N.-H. Vu ◽  
...  

A total 20 074 230 sequencing reads were generated by Illumina HiSeq<sup>™ </sup>2500 from three different Toxicodendron vernicifluum tissue samples. In total, 48 693 unigenes with an average length of 703.34 bp were obtained by de novo assembly. 3392 potential EST-SSRs (expressed sequence tag-simple sequence repeat) were identified as potential molecular markers from unigenes with lengths exceeding 1 kb. A total of 80 pairs of PCR primers were randomly selected to validate the assembly quality and develop EST-SSR markers from genomic DNA. Of these primer pairs, 14 primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism within the lacquer tree population in Langao, Shaanxi province, China. There were high genetic diversities (number of alleles per locus (A) = 2.93, polymorphic information content (PIC) = 0.53, observed heterozygosity (Ho) = 0.62 and expected heterozygosity (He) = 0.85) in the lacquer tree natural population. The four loci were significantly deviated from Hardy-Weinberg equilibrium. These results suggested high homozygosity in the population and low or deficiency in heterozygosity (inbreeding coefficient (Fis) = 0.27). These polymorphic EST-SSR markers will provide the base for further studies of genetic structure and breeding in T. vernicifluum.

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 411 ◽  
Author(s):  
Yu Ge ◽  
Lin Tan ◽  
Bin Wu ◽  
Tao Wang ◽  
Teng Zhang ◽  
...  

Avocado (Persea americana Mill.) could be considered as an important tropical and subtropical woody oil crop with high economic and nutritional value. Despite the importance of this species, genomic information is currently unavailable for avocado and closely related congeners. In this study, we generated more than 216 million clean reads from different avocado ecotypes using Illumina HiSeq high-throughput sequencing technology. The high-quality reads were assembled into 154,310 unigenes with an average length of 922 bp. A total of 55,558 simple sequence repeat (SSR) loci detected among the 43,270 SSR-containing unigene sequences were used to develop 74,580 expressed sequence tag (EST)-SSR markers. From these markers, a subset of 100 EST-SSR markers was randomly chosen to identify polymorphic EST-SSR markers in 28 avocado accessions. Sixteen EST-SSR markers with moderate to high polymorphism levels were detected, with polymorphism information contents ranging from 0.33 to 0.84 and averaging 0.63. These 16 polymorphic EST-SSRs could clearly and effectively distinguish the 28 avocado accessions. In summary, our study is the first presentation of transcriptome data of different avocado ecotypes and comprehensive study on the development and analysis of a set of EST-SSR markers in avocado. The application of next-generation sequencing techniques for SSR development is a potentially powerful tool for genetic studies.


2020 ◽  
Author(s):  
Duy Dinh Vu ◽  
Syed Noor Muhammad Shah ◽  
Mai Phuong Pham ◽  
Van Thang Bui ◽  
Minh Tam Nguyen ◽  
...  

Abstract Background: Understanding the genetic diversity in threatened species that occur in forest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population is unknown due to lack of efficient molecular markers.Results: In this study, we employed Illumina HiSeq TM 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). A total of 23,741,783 raw reads were obtained and assembled, from which, 89,271 unigenes with an average length of 598.3191 nt were generated. During functional annotation, 31,686 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 11,343 expressed sequence tag-simple sequence repeat (EST-SSRs) were detected. From 7,774 primer pairs, 101 were selected for polymorphism validation, in which, 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used to analyze genetic diversity and structure of the natural populations. The obtained results revealed that the shows high levels of genetic diversity in populations, the average observed and expected heterozygosity were H O = 0.422 and H E = 0.479. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of bottleneck in all populations. Genetic differentiation among populations was moderate (F ST = 0.133) and indicating limited gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. These results showed a moderate genetic structure of P. vietnamensis. STRUCTURE analysis and the unweighted pair-group method with arithmetic means (UPGMA) tree revealed strong genetic structure and two genetic clusters related to geographical distances, as well. Conclusion: Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.


2020 ◽  
Author(s):  
Duy Dinh Vu ◽  
Syed Noor Muhammad Shah ◽  
Mai Phuong Pham ◽  
Van Thang Bui ◽  
Minh Tam Nguyen ◽  
...  

Abstract Background: Understanding the genetic diversity in threatened species that occur in forest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population is unknown due to lack of efficient molecular markers. Results: In this study, we employed Illumina HiSeq TM 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). A total of 23,741,783 raw reads were obtained and assembled, from which, 89,271 unigenes with an average length of 598.3191 nt were generated. During functional annotation, 31,686 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 11,343 expressed sequence tag-simple sequence repeat (EST-SSRs) were detected. From 7,774 primer pairs, 101 were selected for polymorphism validation, in which, 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used to analyze genetic diversity and structure of the natural populations. The obtained results revealed that the shows high levels of genetic diversity in populations, the average observed and expected heterozygosity were H O = 0.422 and H E = 0.479. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of bottleneck in all populations. Genetic differentiation among populations was moderate (F ST = 0.133) and indicating limited gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. These results showed a moderate genetic structure of P. vietnamensis. STRUCTURE analysis and the unweighted pair-group method with arithmetic means (UPGMA) tree revealed strong genetic structure and two genetic clusters related to geographical distances, as well. Conclusion: Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.


2020 ◽  
Vol 69 (1) ◽  
pp. 116-122
Author(s):  
Tsam Ju ◽  
Perla Farhat ◽  
Wenjing Tao ◽  
Jibin Miao ◽  
Jialiang Li ◽  
...  

AbstractJuniperus squamata, an endemic conifer of Asia, is an important shrub ecologically and economically. Yet little is known about its genetic diversity and population structure due to lacking of highly polymorphic molecular markers. In this study, expressed sequence tag microsatellite markers (EST-SSR) were developed for Juniperus squamata. Illumina HiSeq data were used to reconstruct the transcriptome of this species by de novo assembly. Based on this transcriptome, 18 SSR markers were designed and successfully amplified. Just one locus was eliminated due to its detection of null alleles and the remaining 17 loci were polymorphic, generating five to 14 alleles per locus in J. squamata. Markers cross-amplification tests were successful in two closely related species of J. squamata. These markers will serve as a basis for further studies to assess the genetic diversity and population structure of J. squamata. As well, they could be useful in promoting sustainable forest management strategies for this species in the face of global climate change.


2019 ◽  
Author(s):  
Duy Dinh Vu ◽  
Syed Noor Muhammad Shah ◽  
Mai Phuong Pham ◽  
Van Thang Bui ◽  
Minh Tam Nguyen ◽  
...  

Abstract Background: Understanding the genetic diversity in threatened species that occur in forest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population is unknown due to lack of efficient molecular markers. Results: In this study, we employed Illumina HiSeq TM 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). A total of 23,741,783 raw reads were obtained and assembled, from which, 89,271 unigenes with an average length of 598.3191 nt were generated. During functional annotation, 31,686 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 11,343 expressed sequence tag-simple sequence repeat (EST-SSRs) were detected. From 7,774 primer pairs, 101 were selected for polymorphism validation, in which, 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used to analyze genetic diversity and structure of the natural populations. The obtained results revealed that the shows high levels of genetic diversity in populations, the average observed and expected heterozygosity were H O = 0.422 and H E = 0.479. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of bottleneck in all populations. Genetic differentiation among populations was moderate (F ST = 0.133) and indicating limited gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. These results showed a moderate genetic structure of P. vietnamensis. STRUCTURE analysis and the unweighted pair-group method with arithmetic means (UPGMA) tree revealed strong genetic structure and two genetic clusters related to geographical distances, as well. Conclusion: Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species. Keywords: Conservation, EST-SSRs; Transcriptome; Panax vietnamensis ; Population genetics


2015 ◽  
Vol 14 (2) ◽  
pp. 157-160
Author(s):  
Puntaree Taeprayoon ◽  
Patcharin Tanya ◽  
Yang Jae Kang ◽  
Anek Limsrivilai ◽  
Suk-Ha Lee ◽  
...  

Next-generation sequencing is a new technique for plant genome sequencing at a large scale that is faster and cheaper than previous sequencing technologies. The present work reports the development of new polymorphic simple sequence repeat (SSR) markers in oil palm (Elaeis guineensis Jacq.) using Illumina HiSeq sequencing data. More than 39 Gb (total 39,086,646,904 bases) was generated from the selected oil palm clone, D4. After de novo assembly, a total of 130,840 potential SSRs were identified. For SSR validation, 144 out of 762 SSR primer pairs were designed, including tri-nucleotide motifs, from the D4 contigs. Using 11 lines from three different clones of oil palm, 61 SSR primers revealed polymorphic alleles and high average polymorphic information content (PIC) values. Cluster analysis separated all oil palm plants into three clusters: clones A, B and C. These identified genome-wide SSR markers will enrich current genomic resources of the oil palm crop.


Author(s):  
Boyun Yang ◽  
Huolin Luo ◽  
Yuan Tao ◽  
Wenjing Yu ◽  
Liping Luo

Cymbidium kanran is an important commercially grown member of the Chinese orchid family. However, little information regarding the molecular biology of this species is available. In this study, the C. kanran root, shoot, stem, leaf, and flower transcriptomes were sequenced with the Illumina HiSeq 4000 system, which resulted in 8.9 Gb of clean reads that were assembled into 74,620 unigenes, with an average length and N50 of 983 bp and 1,640 bp, respectively. The screening of seven databases (NR, NT, GO, KOG, KEGG, Swiss-Prot, and InterPro) for similar sequences resulted in the functional annotation of 49,813 unigenes. Additionally, 173 MADS-box genes, which help to control major aspects of plant development, were identified and their codon usage bias was analyzed. Only 26 genes had a low ENC (less than or equal to 35), suggesting the codon usage bias was weak. Base mutations were the major determinants of codon usage, although natural selection pressure also influenced codon usage bias. Moreover, 22 optimal codons were identified based on ΔRSCU, and 20 codons ended with A/U. The results of this study provide the foundation for the molecular breeding of new varieties


2006 ◽  
Vol 4 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Elena K. Khlestkina ◽  
Rajeev K. Varshney ◽  
Marion S. Röder ◽  
Andreas Graner ◽  
Andreas Börner

Molecular investigations of qualitative and quantitative changes in the genetic diversity of cultivated crops are useful for plant breeding and the management of crop genetic resources. A genotyping study, based on 28 genomic (g-SSR) and 13 expressed sequence tag-derived (e-SSR) microsatellite markers uniformly distributed across the barley genome, was conducted on samples of cultivated barley (Hordeum vulgare L.) collected at intervals of 40–50 years in three comparable geographical regions in Austria, Albania and India. The analysis indicated an absence of any significant differences either in the total number of alleles per locus or in g-SSR and e-SSR polymorphic information content (PIC) values from the Indian and Austrian materials. However, a slight reduction in genetic diversity was noted among the materials collected in Albania. The trend in numbers of collection mission-specific SSR alleles suggests significant allele flow over the time interval sampled. The g-SSRs yielded a higher mean number of alleles per locus and a superior PIC than the e-SSR markers. We conclude that a qualitative, rather than a quantitative shift in diversity has taken place over time, and that g-SSR markers detect more diversity than do e-SSR markers.


2020 ◽  
Author(s):  
Guangli Shi ◽  
Zhenxing Wang ◽  
Dan Sun ◽  
Susu Zhang ◽  
Jianhui Guo ◽  
...  

Abstract Background: Schisandra chinensis, a climbing woody vine, is the best-known and representative genus of the Schisandraceae family which is an important plant in Chinese herbal medicine; however, the application of molecular breeding is restricted by the few genetic markers for this species. Results: In this study, we performed transcriptome sequencing of S. chinensis using the Illumina HiSeq platform to establish a library of expressed sequence tag-simple sequence repeat (EST-SSR) markers. A total of 59,786 unigenes were obtained and 6254 putative SSR sites were detected with a frequency of 10.46%. The predominant type of repeat motif was dinucleotide (35.71%), followed by trinucleotide (13.22%), hexanucleotide (0.50%), tetranucleotide (0.06%), and pentanucleotide (0.22%). We randomly selected 50 EST-SSR primer pairs and used 14 of these for genetic diversity analysis in 42 S. chinensis genotypes. All 42 accessions were successfully identified and formed four major clusters, indicating that the SSR markers can be used for genetic diversity analysis and genetic linkage map construction. In addition, using the polymorphic bands associated with 10 markers as DNA fingerprints, we generated a manual cultivar identification diagram that can distinguish between the 42 accessions, with different individuals identifiable based on polymorphic band patterns. Conclusion: S. chinensis transcriptome data is an effective resource for developing SSR markers. These results can provide a basis for the identification of S. chinensis accessions and construction of genetic linkage maps as part of future selective breeding and conservation efforts for this valuable plant.


2019 ◽  
Author(s):  
Shifeng Cheng ◽  
Yuan Fu ◽  
Yaolei Zhang ◽  
Wenfei Xian ◽  
Hongli Wang ◽  
...  

Abstract BACKGROUND: The Mongolian gerbil (Meriones unguiculatus) has historically been used as a model organism for the auditory and visual systems, stroke/ischemia, epilepsy and aging related research since 1935 when laboratory gerbils were separated from their wild counterparts. In this study we report genome sequencing, assembly, and annotation further supported by transcriptome sequencing and assembly from 27 different tissues samples. RESULTS: The genome was assembled using Illumina HiSeq 2000 and resulted in a final genome size of 2.54 Gbp with contig and scaffold N50 values of 31.4 Kbp and 500.0 Kbp, respectively. Based on the k-mer estimated genome size of 2.48 Gbp, the assembly appears to be complete. The genome annotation was supported by transcriptome data that identified 31 769 (>2000bp) predicted protein-coding genes across 27 tissue samples. A BUSCO search of 3023 mammalian groups resulted in 86% of curated single copy orthologs present among predicted genes, indicating a high level of completeness of the genome. CONCLUSIONS: We report a de novo assembly of the Mongolian gerbil genome that was further enhanced by assembly of transcriptome data from several tissues. Sequencing of this genome increases the utility of the gerbil as a model organism, opening the availability of now widely used genetic tools.


Sign in / Sign up

Export Citation Format

Share Document