scholarly journals Silage-corn harvesting machinery traffic effects on soil bulk density and water permeability

2013 ◽  
Vol 59 (No. 4) ◽  
pp. 136-140
Author(s):  
I. Ahmadi ◽  
H. Ghaur

Soil compaction caused by machinery traffic affects the growth of agricultural crops and also has environmental effects like soil damage and erosion. Field experiments were conducted to study the effects of repeated silage-corn harvesting machinery traffic on dry soil bulk density and porosity variations at three different sampling depths, moreover average water permeability coefficient of the examined silty clay loam soil was measured using the falling head method of water permeability test. The examined treatments which were applied while harvesting silage-corn with the combination of tractor, chopper and truck were the number of traffic passes and depths of soil sampling. Significant differences between soil compaction treatments were observed in bulk density and porosity of soil. Numerically, 22% increase in soil bulk density and 19% reduction in soil porosity were recorded due to the effect of two passes of the examined machineries over the field terrain comparing to the non-traffic treatment. Moreover; soil sampling at 0–10 cm and 20–30 cm depths resulted in the highest and the lowest soil porosity respectively.

2011 ◽  
Vol 51 (No, 7) ◽  
pp. 289-295 ◽  
Author(s):  
O.F. Taser ◽  
O. Kara

Soil compaction caused by mechanical force affects the vegetative and generative plant growth. Field experiments were conducted to study the effects of soil compaction treatments and soil contact pressures on bulk density, penetration resistance and silage maize emergence in a clay-loam soil. Soil compaction treatments were applied while planting as follows: Compaction on furrow surface (F-surface), compaction on furrow bottom (F-bottom), compaction on inter row (I-row), and non-extra compaction as a control (C). The soil contact pressures of 0.025, 0.051 and 0.076 MPa were applied while the control was 0.0085 MPa. Significant differences between soil compaction treatments and contact pressures were recorded in bulk density, penetration resistance and silage maize emergence. Percentage of emerged seedlings increased as the soil contact pressure was increased slightly. The lowest mean percentage of emerged seedlings (52.63%) was obtained with 0.076 MPa contact pressure in F-surface treatment and the highest mean value (81.58%) was obtained with 0.025 MPa contact pressure in F-bottom compaction treatment. The control treatment gave the 69% mean value under the non-irrigated condition.


Author(s):  
Abdu Dauda ◽  
Bukar Usman

Soil compaction from farm machinery is an environmental problem. The effect of compaction on plant growth and yield depends on the crop grown and the environmental conditions that crop encounters. The effect of compaction from tractor traffic on soybean (Glycine max), variety TGX1448-2E, on a sandy clay loam soil in the semi-arid region of northern Nigeria was investigated for two growing seasons, 2015 and 2016. A randomized complete block design of the field of plots with treatments of 0,5,10, 15 and 20 passes of a tractor MF 390 was used. Each treatment was replicated three times. The soil bulk density, penetration resistance and soil moisture content for each applied load were measured and the yield from each treatment was determined.  Agronomic treatments were kept the same for all plots in both 2015 and 2016. Results showed increased soil bulk density, penetration resistance and soil moisture content with increased tractor passes. Highest grain yield was obtained at 5 tractor passes with a mean bulk density of 1.76 Mgm,-3 penetration resistance 1.70 MPa and moisture content 13.37% with a mean yield of 2568 kgha-1 and lowest was obtained from 20 tractor passes were 340 kgha-1. Statistical models were used to predict yield as a function of bulk density, penetration resistance,   moisture content, contact pressure, and a number of tractor traffic passes. Grain yield with respect to moisture content gave the best yield prediction (r2 = 0.94).           


2017 ◽  
Vol 30 (2) ◽  
pp. 1-15
Author(s):  
Sadiq J. Muhsin

A field experiment was conducted in two different locations at Agricultural Research Station of Garmat Ali in Basrah-Iraq. The aim of this investigation is to evaluate the effective field capacity, field efficiency, draft force, pulverization index (PI), soil bulk density and soil porosity for moldboard plow (primary tillage), mounted disk harrow and offset disk harrow (secondary tillage) under different operating speed (2.54 (S1), 3.84 (S2) and 5.77 (S3) km hr-1) in two different soil textures (silty loam soil and clay soil). The design of the experiment was complete randomized blocks design in factorial experiment. The results showed that the moldboard plow had high values of draft force, pulverization index (PI) and soil porosity and lower soil bulk density, effective field capacity and field efficiency than that of mounted disk harrow and offset disk harrow in both soils. The operating speed and the interaction between operating speed and implements tillage type had significantly affect (p < 0.05) on all the studied parameters. The silty loam soil achieved higher effective field capacity, field efficiency, soil porosity (low bulk density) and considerable pulverization of soil clods than that of clay soil. The results also showed that the optimal operation conditions of implements tillage were associated with high operating speed of 5.77 km hr-1 in silty loam soil especially with using the disks harrow.


2021 ◽  
Vol 10 (20) ◽  
pp. 112-117
Author(s):  
Lucia Macrii ◽  
Dorin Cebanu ◽  
Dionisie Zaharco

The soil health can be deduced by chemical, biological and physical properties. This triad of features influence each other and equally determines soil quality and fertility. The paper includes the study regarding physical state of the chernozem soil characterized by bulk density – soil physical property that estimate soil compaction. The study took place in long-term field experiments of the Selectia Research Institute of Field Crop located in the North part of Moldova. The experimental data were obtained in 2019-2020 agriculture year. The soil bulk density, studied in different crop rotations and fertilization systems, was determined under winter wheat agrocenosis after harvesting in the 0-40 cm soil layer. The researches has shown that chernozem soil bulk density registered more favorable indices in crop rotations that include: perennial legumes and grasses in a mixture or only perennial legumes; less row crops - which means minimizing tillage (mechanic disturbance of soil). Regarding fertilization systems – the soil compaction is lower on the plots with adequate amount of organic fertilizer.


1991 ◽  
Vol 71 (3) ◽  
pp. 305-312 ◽  
Author(s):  
A. A. Bomke ◽  
L. E. Lowe

Field experiments evaluated yield response to deep-pit poultry manure application to barley on a clay soil near Prince George and a grass-legume forage on a silty clay loam soil near Chilliwack, B.C. Substantial dry matter yield increases were measured at manure applications up to 20 t ha−1. Subsamples of both crops and the poultry manure were analyzed for Cu, Zn, Mn, Ba, Pb, Ni, Cr, Cd, B and Co. Selenium analyses were made on selected crop samples. There were no indications of toxicity problems even at 40 t ha−1, the highest application. Copper and Zn concentrations in forages were increased by the poultry manure and the Mn/Cu ratio tended to decrease with manure application. Key words: Orchardgrass, ladino clover, barley, micronutrients


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2019 ◽  
Vol 15 (No. 1) ◽  
pp. 47-54 ◽  
Author(s):  
Mxolisi Mtyobile ◽  
Lindah Muzangwa ◽  
Pearson Nyari Stephano Mnkeni

The effects of tillage and crop rotation on the soil carbon, the soil bulk density, the porosity and the soil water content were evaluated during the 6<sup>th</sup> season of an on-going field trial at the University of Fort Hare Farm (UFH), South Africa. Two tillage systems; conventional tillage (CT) and no-till and crop rotations; maize (Zea mays L.)-fallow-maize (MFM), maize-fallow-soybean (Glycine max L.) (MFS); maize-wheat (Triticum aestivum L.)-maize (MWM) and  maize-wheat-soybean (MWS) were evaluated. The field experiment was a 2 × 4 factorial, laid out in a randomised complete design. The crop residues were retained for the no-till plots and incorporated for the CT plots, after each cropping season. No significant effects (P &gt; 0.05) of the tillage and crop rotation on the bulk density were observed. However, the values ranged from 1.32 to1.37 g/cm<sup>3</sup>. Significant interaction effects of the tillage and crop rotation were observed on the soil porosity (P &lt; 0.01) and the soil water content (P &lt; 0.05). The porosity for the MFM and the MWS, was higher under the CT whereas for the MWM and the MWS, it was higher under the no-till. However, the greatest porosity was under the MWS. Whilst the no-till significantly increased (P &lt; 0.05) the soil water content compared to the CT; the greatest soil water content was observed when the no-till was combined with the MWM rotations. The soil organic carbon (SOC) was increased more (P &lt; 0.05) by the no-till than the CT, and the MFM consistently had the least SOC compared with the rest of the crop rotations, at all the sampling depths (0–5, 5–10 and 10–20 cm). The soil bulk density negatively correlated with the soil porosity and the soil water content, whereas the porosity positively correlated with the soil water content. The study concluded that the crop rotations, the MWM and the MWS under the no-till coupled with the residue retention improved the soil porosity and the soil water content levels the most.


2011 ◽  
Vol 28 (4) ◽  
pp. 194-198 ◽  
Author(s):  
Oscar Bustos ◽  
Andrew Egan

Abstract A study of soil compaction associated with four harvesting systems—a forwarder working with a mechanized harvester and a rubber-tired cable skidder, a farm tractor, and a bulldozer, each of them coupled with a chainsaw felling—was conducted in a group selection harvest of a mixed hardwood stand in Maine. The bulldozer system was associated with the highest percentage differences in soil bulk density measured in machine tracks (16.9%), trail centerlines (15.7%), and harvested group selection units (13.1%) versus adjacent untrafficked areas, whereas the forwarder system was associated with the lowest percentage differences in soil bulk density measured in machine tracks (3.5%), trail centerlines (1.2%), and harvested group selection units (6.3%) versus adjacent untrafficked areas. Results will help to inform loggers and foresters on equipment selection, harvest planning, and the conservation of forest soils and soil productivity.


2002 ◽  
Vol 82 (2) ◽  
pp. 147-154 ◽  
Author(s):  
C. H. Li ◽  
B. L. Ma ◽  
T. Q. Zhang

Soil compaction associated with inappropriate maneuvering of field equipment, and/or modern cropping system negatively affect soil physical properties, and thus, may limit microbial activities and biochemical processes, which are important to nutrient bioavailability. An experiment was carried out using the pot-culture technique to determine the effect of bulk density on soil microbial populations and enzyme activities in an Eutric Cambisol sandy loam soil (United Nations’ classification) planted with maize (Zea mays L.) in the Experimental Farm of Henan Agricultural University, Henan, China (34°49′N, 113°40′E). Numbers of bacteria, fungi, and actinomycetes and the enzyme activities of invertase, polyphenol oxidase, catalase, urease, protease, and phosphatase were determined at various stages during the plant growing season. Microbial numbers were negatively and linearly related to soil bulk density. With increases in soil bulk density from 1.00 to 1.60 Mg m-3, total numbers of bacteria, fungi and actinomycetes declined by 26-39%. The strongest correlations between the soil microbial population and bulk density occurred at the plant growth stages of the 6 fully expanded leaf (V6) and anthesis (R1), with R2 > 0.90 (P< 0.01) for all three microorganism categories. Increasing soil bulk density was related quadratically to the activities of soil invertase and polyphenol oxidase, protease and catalase. It appears that the greatest activities of most soil enzymes occurred at a bulk density of 1.0 to 1.3 Mg m-3, which are optimum for most field crops. The plant growth stages also had an important impact on soil enzyme activities and microbial populations, with strong positive associations between soil microorganisms and enzyme activities with crop growth. Key words: Maize, soil enzymes, microbial population, soil compaction, bulk density, Zea mays


1988 ◽  
Vol 5 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Stephen G. Shetron ◽  
John A. Sturos ◽  
Eunice Padley ◽  
Carl Trettin

Abstract The change in wheel track surface soil bulk densities was determined after a mechanized thinning in a northern red oak stand. Mean bulk density values of the 0 to 5 cm surface of the wheel tracks immediately after felling, bunching, and skidding were: 0.80 g/cc on the high use areas; 0.77 g/cc on the low use areas; and 0.42 g/cc in the undisturbed areas. No significant differences in surface soil bulk densities were found between several loading treatments using a four-wheel drive articulated forwarder. The data indicate that initial passes of the equipment produce most of the disturbance. No significant recovery in wheel track soil bulk densities occurred during the year following harvest regardless of treatment. North. J. Appl. For. 5:120-123, June 1988.


Sign in / Sign up

Export Citation Format

Share Document