scholarly journals Silage maize (Zea mays L.) seedlings emergence as influenced by soil compaction treatments and contact pressures

2011 ◽  
Vol 51 (No, 7) ◽  
pp. 289-295 ◽  
Author(s):  
O.F. Taser ◽  
O. Kara

Soil compaction caused by mechanical force affects the vegetative and generative plant growth. Field experiments were conducted to study the effects of soil compaction treatments and soil contact pressures on bulk density, penetration resistance and silage maize emergence in a clay-loam soil. Soil compaction treatments were applied while planting as follows: Compaction on furrow surface (F-surface), compaction on furrow bottom (F-bottom), compaction on inter row (I-row), and non-extra compaction as a control (C). The soil contact pressures of 0.025, 0.051 and 0.076 MPa were applied while the control was 0.0085 MPa. Significant differences between soil compaction treatments and contact pressures were recorded in bulk density, penetration resistance and silage maize emergence. Percentage of emerged seedlings increased as the soil contact pressure was increased slightly. The lowest mean percentage of emerged seedlings (52.63%) was obtained with 0.076 MPa contact pressure in F-surface treatment and the highest mean value (81.58%) was obtained with 0.025 MPa contact pressure in F-bottom compaction treatment. The control treatment gave the 69% mean value under the non-irrigated condition.

2013 ◽  
Vol 59 (No. 4) ◽  
pp. 136-140
Author(s):  
I. Ahmadi ◽  
H. Ghaur

Soil compaction caused by machinery traffic affects the growth of agricultural crops and also has environmental effects like soil damage and erosion. Field experiments were conducted to study the effects of repeated silage-corn harvesting machinery traffic on dry soil bulk density and porosity variations at three different sampling depths, moreover average water permeability coefficient of the examined silty clay loam soil was measured using the falling head method of water permeability test. The examined treatments which were applied while harvesting silage-corn with the combination of tractor, chopper and truck were the number of traffic passes and depths of soil sampling. Significant differences between soil compaction treatments were observed in bulk density and porosity of soil. Numerically, 22% increase in soil bulk density and 19% reduction in soil porosity were recorded due to the effect of two passes of the examined machineries over the field terrain comparing to the non-traffic treatment. Moreover; soil sampling at 0–10 cm and 20–30 cm depths resulted in the highest and the lowest soil porosity respectively.


Author(s):  
Abdu Dauda ◽  
Bukar Usman

Soil compaction from farm machinery is an environmental problem. The effect of compaction on plant growth and yield depends on the crop grown and the environmental conditions that crop encounters. The effect of compaction from tractor traffic on soybean (Glycine max), variety TGX1448-2E, on a sandy clay loam soil in the semi-arid region of northern Nigeria was investigated for two growing seasons, 2015 and 2016. A randomized complete block design of the field of plots with treatments of 0,5,10, 15 and 20 passes of a tractor MF 390 was used. Each treatment was replicated three times. The soil bulk density, penetration resistance and soil moisture content for each applied load were measured and the yield from each treatment was determined.  Agronomic treatments were kept the same for all plots in both 2015 and 2016. Results showed increased soil bulk density, penetration resistance and soil moisture content with increased tractor passes. Highest grain yield was obtained at 5 tractor passes with a mean bulk density of 1.76 Mgm,-3 penetration resistance 1.70 MPa and moisture content 13.37% with a mean yield of 2568 kgha-1 and lowest was obtained from 20 tractor passes were 340 kgha-1. Statistical models were used to predict yield as a function of bulk density, penetration resistance,   moisture content, contact pressure, and a number of tractor traffic passes. Grain yield with respect to moisture content gave the best yield prediction (r2 = 0.94).           


2018 ◽  
Vol 66 (4) ◽  
pp. 416-420 ◽  
Author(s):  
Viliam Nagy ◽  
Peter Šurda ◽  
Ľubomír Lichner ◽  
Attila J. Kovács ◽  
Gábor Milics

Abstract Soil compaction causes important physical modifications at the subsurface soil, especially from 10 to 30 cm depths. Compaction leads to a decrease in infiltration rates, in saturated hydraulic conductivity, and in porosity, as well as causes an increase in soil bulk density. However, compaction is considered to be a frequent negative consequence of applied agricultural management practices in Slovakia. Detailed determination of soil compaction and the investigation of a compaction impact on water content, water penetration depth and potential change in water storage in sandy loam soil under sunflower (Helianthus annuus L.) was carried out at 3 plots (K1, K2 and K3) within an experimental site (field) K near Kalinkovo village (southwest Slovakia). Plot K1 was situated on the edge of the field, where heavy agricultural equipment was turning. Plot K2 represented the ridge (the crop row), and plot K3 the furrow (the inter–row area of the field). Soil penetration resistance and bulk density of undisturbed soil samples was determined together with the infiltration experiments taken at all defined plots. The vertical bulk density distribution was similar to the vertical soil penetration resistance distribution, i.e., the highest values of bulk density and soil penetration resistance were estimated at the plot K1 in 15–20 cm depths, and the lowest values at the plot K2. Application of 50 mm of water resulted in the penetration depth of 30 cm only at all 3 plots. Soil water storage measured at the plot K2 (in the ridge) was higher than the soil water storage measured at the plot K3 (in the furrow), and 4.2 times higher than the soil water storage measured at the most compacted plot K1 on the edge of the field. Results of the experiments indicate the sequence in the thickness of compacted soil layers at studied plots in order (from the least to highest compacted ones): K2–K3–K1.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2002 ◽  
Vol 82 (1) ◽  
pp. 1-8 ◽  
Author(s):  
N. T. Donkor ◽  
J. V. Gedir ◽  
R. J. Hudson ◽  
E. W. Bork ◽  
D. S. Chanasyk ◽  
...  

Livestock trampling impacts have been assessed in many Alberta grassland ecosystems, but the impacts of animal trampling on Aspen Boreal ecosystems have not been documented. This study compared the effects of high intensity [4.16 animal unit month per ha (AUM) ha-1] short-duration grazing (SDG) versus moderate intensity (2.08 AUM ha-1) continuous grazing (CG) by wapiti (Cervus elaphus canadensis) on soil compaction as measured by bulk density at field moist condition (Dbf) and penetration resistance (PR). Herbage phytomass was also measured on grazed pastures and compared to an ungrazed control (UNG). The study was conducted at Edmonton, Alberta, on a Dark Gray Luvisolic soil of loam texture. Sampling was conducted in the spring and fall of 1997 and 1998. Soil cores were collected at 2.5-cm intervals to a depth of 15-cm for measurement of bulk density (Dbf) and moisture content. Penetration resistance to 15 cm at 2.5-cm intervals was measured with a hand-pushed cone penetrometer. The Dbf and PR of the top 10-cm of soil were significantly (P ≤ 0.05) greater by 15 and 17% under SDG than CG, respectively, by wapiti. Generally, Dbf in both grazing treatments decreased over winter at the 0-7.5 cm and 12.5-15 cm depths, suggesting that freeze-thaw cycles over the winter alleviated compaction. Soil water content under SDG was significantly (P < 0.05) lower than CG. Total standing crop and fallen litter were significantly (P ≤ 0.05) greater in CG treatment than the SDG. The SDG treatment had significantly (P ≤ 0.05) less pasture herbage than CG areas in the spring (16%) and fall (26%) of 1997, and in the spring (22%) and fall (24%) of 1998, respectively. The SDG did not show any advantage over CG in improving soil physical characteristics and herbage production. Key Words: Bulk density, Cervus elaphus, moisture content, penetration resistance, pasture production


2021 ◽  
Vol 17 (4) ◽  
pp. 295-300
Author(s):  
P.O.O. Dada ◽  
J.J. Musa ◽  
O.O. Olla ◽  
J.O. Ohu ◽  
J.K. Adewumi

Soil compaction has effect on soil physical properties which could affect crop growth and yield. This study was conducted to determine the influence of incorporating organic materials and load application (tractorization) on the physical properties of sandy loamy soil in Abeokuta, Ogun State, Nigeria. Organic materials were cow dung, poultry and swine manure. Application rates of organic manures were 0 (control), 5 and 10 tonnes per hectare. Forty-five plots measuring 5 by 3 m were established in a complete randomized block experimental design with three replications making a total of 135 plots. Load application was done using an MF 435 tractor coupled with a 20-disc harrow at 0 (control), 5, 10, 15 and 20 passes. Penetration resistance, bulk density, gravimetric moisture content andporosity were determined using standard procedures. Penetrometer resistance at these passes were 392.2, 293.3, 285.0, 302.0 and 224.9 kPa respectively with significant differences between treatments (P≤0.05). Mean bulk density for the passes were 1.21, 1.26, 1.31, 1.27 and 1.29 g/cm3 respectively and bulk density increased with tractor passes. The effect of tractor passes, and manure incorporation rate did not have any significant effect on gravimetric moisture content. Poultry manure increased bulk density and penetrometer resistance on plots than swine manure and cow dung hence poultry manure at 10 t/ha can be incorporated on a sandy loam soil to enhance soil fertility and sustainability. Keywords: Tractorization, organic manure, sandy loam, penetration resistance, bulk density


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2118 ◽  
Author(s):  
Giorgio Capello ◽  
Marcella Biddoccu ◽  
Stefano Ferraris ◽  
Eugenio Cavallo

Soil erosion is affected by rainfall temporal patterns and intensity variability. In vineyards, machine traffic is implemented with particular intensity from late spring to harvest, and it is responsible for soil compaction, which likely affects soil hydraulic properties, runoff, and soil erosion. Additionally, the hydraulic and physical properties of soil are highly influenced by vineyards’ inter-rows soil management. The effects on soil compaction and both hydrological and erosional processes of machine traffic were investigated on a sloping vineyard with different inter-row soil managements (tillage and permanent grass cover) in the Alto Monferrato area (Piedmont, NW Italy). During the investigation (November 2016–October 2018), soil water content, rainfall, runoff, and soil erosion were continuously monitored. Field-saturated hydraulic conductivity, soil penetration resistance, and bulk density were recorded periodically in portions of inter-rows affected and not affected by the machine traffic. Very different yearly precipitation characterized the observed period, leading to higher bulk density and lower infiltration rates in the wetter year, especially in the tilled vineyard, whereas soil penetration resistance was generally higher in the grassed plot and in drier conditions. In the wet year, management with grass cover considerably reduced runoff (−76%) and soil loss (−83%) compared to tillage and in the dry season. Those results highlight the need to limit the tractor traffic, in order to reduce negative effects due to soil compaction, especially in tilled inter-rows.


2016 ◽  
Author(s):  
Metin Mujdeci ◽  
Ahmet Ali Isildar ◽  
Veli Uygur ◽  
Pelin Alaboz ◽  
Husnu Unlu ◽  
...  

Abstract. Soil compaction is common problem of mineral soils under conventional tillage practices. Organic matter addition is an efficient way of reducing the effects of field traffic in soil compaction. The aim of this study was to investigate the effects of number of tractor passes (1, 3 and 5) on depth dependent (0–10 and 10–20 cm) penetration resistance, bulk density and porosity of a clay textured soil (Typic Xerofluvent) under organic vegetable cultivation practiced in 2010–2013 growing seasons treated with farmyard manure (35 t FYM ha−1), green manure (GM) (common vetch, Vicia sativa L.) and conventional tillage (C). The number of tractor passes resulted in increases in bulk density and penetration resistance (C > GM > FYM) whereas the volume of total and macro pores decreased. The maximum penetration resistance (3.60 MPa) was recorded in C treatment with 5 passes in 0–10 cm depth whereas the minimum (1.64 MPa) was observed for FYM treatment with 1 pass in 10–20 cm depth. The highest bulk density was determined as 1.61 g cm−3 for C treatment with 5 passes in 10–20 cm depth, the smallest value was 1.25 g cm−3 in the FYM treatment with only 1 pass in 0–10 cm depth. The highest total and macro pores volume were determined as 0.53 and 0.16 cm3 cm−3, respectively, in 0–10 cm depth of FYM treatment with 1 pass. The volume of micro pores (0.38 cm3 cm−3) was higher in 0–10 cm depth of FYM treatment with 3 passes. It can be concluded that organic pre-composted organic amendment rather than green manure was likely to be more efficient in chasing compaction problem in soils.


2009 ◽  
Vol 59 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Enola Reintam ◽  
Katrin Trükmann ◽  
Jaan Kuht ◽  
Edvin Nugis ◽  
Liina Edesi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document