Forest Soil Compaction: Effect of Multiple Passes and Loadings on Wheel Track Surface Soil Bulk Density

1988 ◽  
Vol 5 (2) ◽  
pp. 120-123 ◽  
Author(s):  
Stephen G. Shetron ◽  
John A. Sturos ◽  
Eunice Padley ◽  
Carl Trettin

Abstract The change in wheel track surface soil bulk densities was determined after a mechanized thinning in a northern red oak stand. Mean bulk density values of the 0 to 5 cm surface of the wheel tracks immediately after felling, bunching, and skidding were: 0.80 g/cc on the high use areas; 0.77 g/cc on the low use areas; and 0.42 g/cc in the undisturbed areas. No significant differences in surface soil bulk densities were found between several loading treatments using a four-wheel drive articulated forwarder. The data indicate that initial passes of the equipment produce most of the disturbance. No significant recovery in wheel track soil bulk densities occurred during the year following harvest regardless of treatment. North. J. Appl. For. 5:120-123, June 1988.

1998 ◽  
Vol 78 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. Brais ◽  
C. Camiré

Soil compaction induced by forest harvesting operations can reduce site productivity. Intensity, extent and persistence of soil compaction were assessed on fine- to medium- and coarse-textured soils. Severe compaction took place in the wheel track section of the skid trails. On fine- to medium-textured soils, half of the effects on the 0- to 10-cm and 10- to 20-cm mineral soil bulk densities (+11 and +8%) and half of the changes in the 10-cm depth soil strength (+69%) occurred in the course of the first two skidding cycles (cycle of half impact). On coarse soils, half of the effect on the 0- to 10-cm bulk density (+11%) occurred during the first three passes. Cycles of half impact for soil strength were 9, 14, 7 and 6 for the 2.5-, 5-, 10-, and 20-cm depths and corresponded to increases of 235, 402, 157 and 103% respectively. Compaction was more limited between track sections of trails. Six to twelve years following clearcutting on fine- to medium-textured soils, 0- to 10-cm soil bulk density was less in the skid trails than on the undisturbed sections of cutovers. Careful logging on moist, fine- to medium-textured soils is the safest way to limit the extent of soil compaction. On coarse-textured soils, spreading the traffic remains a valid option. Key words: Soil compaction, bulk density, soil strength, forest harvesting, careful logging


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 696
Author(s):  
Abdolmajid Moinfar ◽  
Gholamhossein Shahgholi ◽  
Yousef Abbaspour-Gilandeh ◽  
Israel Herrera-Miranda ◽  
José Luis Hernández-Hernández ◽  
...  

To determine the effect of the tractor driving system type on the soil compaction and soil behavior a series of tests was conducted using Goldoni 240 tractor with a power rate of 30.8 kW and included four similar tires at three different driving systems (4WD, rear-wheel drive (RWD) and front-wheel drive (FWD)). To evaluate these systems’ effects on soil compaction, tests were conducted at three soil moisture contents (10, 15 and 20% d.b.), three tire inflation pressures (170, 200 and 230 kPa), and three tractor speeds (1.26, 3.96 and 6.78 km/h). Soil bulk density was measured at three average depths of 20, 30 and 40 cm. To evaluate soil compaction, cylindrical cores were used and to assess soil behavior during this process, the soil displacement in a three coordinate system was measured using three displacement transducers. It was found that the 4WD system created the least bulk density of 1155 kg/m3, while the FWD system led to the highest density of 1241 kg/m3. Maximum vertical soil compression of 55 mm occurred for the FWD system and it declined to 43 and 36 mm in RWD and 4WD systems, respectively. Soil displacement in the horizontal and lateral directions was larger for the FWD system in comparison to the other systems. With increment of speed and depth soil compaction decreased. Minimum bulk density of 1109 kg/m3 was occurred at velocity of 6.78 Km/h using the 4WD system, also with this system at the depth 40 cm density was 1127 kg/m3. While at velocity of 1.26 Km/h and depth of 20 cm soil density was 1190 kg/m3.


1986 ◽  
Vol 16 (4) ◽  
pp. 750-754 ◽  
Author(s):  
John R. Donnelly ◽  
John B. Shane

Soil and vegetation responses to artificially imposed surface compaction and the effects of bark mulch on these responses were monitored for a 5-year period within a Quercusalba L. – Quercusvelutina Lam. – Quercusrubra L. forest growing on a loamy sand in northwestern Vermont. Compaction resulted in significant changes in vegetation and soil physical properties. Soil bulk density, soil penetration resistance, surface soil moisture, and soil temperature increased following compaction; infiltration capacity and the radial growth of Acerrubrum L. and Q. velutina decreased. Application of bark mulch prior to compaction tended to reduce compaction effects. Postcompaction additions of bark mulch did not result in noticeable amelioration of compaction-induced changes 2 years after application.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2011 ◽  
Vol 28 (4) ◽  
pp. 194-198 ◽  
Author(s):  
Oscar Bustos ◽  
Andrew Egan

Abstract A study of soil compaction associated with four harvesting systems—a forwarder working with a mechanized harvester and a rubber-tired cable skidder, a farm tractor, and a bulldozer, each of them coupled with a chainsaw felling—was conducted in a group selection harvest of a mixed hardwood stand in Maine. The bulldozer system was associated with the highest percentage differences in soil bulk density measured in machine tracks (16.9%), trail centerlines (15.7%), and harvested group selection units (13.1%) versus adjacent untrafficked areas, whereas the forwarder system was associated with the lowest percentage differences in soil bulk density measured in machine tracks (3.5%), trail centerlines (1.2%), and harvested group selection units (6.3%) versus adjacent untrafficked areas. Results will help to inform loggers and foresters on equipment selection, harvest planning, and the conservation of forest soils and soil productivity.


2002 ◽  
Vol 82 (2) ◽  
pp. 147-154 ◽  
Author(s):  
C. H. Li ◽  
B. L. Ma ◽  
T. Q. Zhang

Soil compaction associated with inappropriate maneuvering of field equipment, and/or modern cropping system negatively affect soil physical properties, and thus, may limit microbial activities and biochemical processes, which are important to nutrient bioavailability. An experiment was carried out using the pot-culture technique to determine the effect of bulk density on soil microbial populations and enzyme activities in an Eutric Cambisol sandy loam soil (United Nations’ classification) planted with maize (Zea mays L.) in the Experimental Farm of Henan Agricultural University, Henan, China (34°49′N, 113°40′E). Numbers of bacteria, fungi, and actinomycetes and the enzyme activities of invertase, polyphenol oxidase, catalase, urease, protease, and phosphatase were determined at various stages during the plant growing season. Microbial numbers were negatively and linearly related to soil bulk density. With increases in soil bulk density from 1.00 to 1.60 Mg m-3, total numbers of bacteria, fungi and actinomycetes declined by 26-39%. The strongest correlations between the soil microbial population and bulk density occurred at the plant growth stages of the 6 fully expanded leaf (V6) and anthesis (R1), with R2 > 0.90 (P< 0.01) for all three microorganism categories. Increasing soil bulk density was related quadratically to the activities of soil invertase and polyphenol oxidase, protease and catalase. It appears that the greatest activities of most soil enzymes occurred at a bulk density of 1.0 to 1.3 Mg m-3, which are optimum for most field crops. The plant growth stages also had an important impact on soil enzyme activities and microbial populations, with strong positive associations between soil microorganisms and enzyme activities with crop growth. Key words: Maize, soil enzymes, microbial population, soil compaction, bulk density, Zea mays


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


1997 ◽  
Vol 75 (5) ◽  
pp. 723-729 ◽  
Author(s):  
Xiao-Lin Li ◽  
Jun-Ling Zhang ◽  
Eckhard George ◽  
Horst Marschner

The influence of an arbuscular mycorrhizal fungus, Glomus mosseae, on the adverse effects of soil compaction on growth and phosphorus (P) uptake of red clover was studied in a model experiment. The pots used in the experiment had three compartments, a central one with a soil bulk density of 1.3 g ∙ cm−3 and two outer compartments with three different levels of soil bulk density (1.3, 1.6, or 1.8 g ∙ cm−3). The soil in the outer compartments was fertilized with P and was either freely accessible to roots and hyphae, or separated by nets and accessible to hyphae only. At a soil bulk density of 1.3 g ∙ cm−3, mycorrhizal plants did not absorb more P than nonmycorrhizal plants except when access of roots to the outer compartments was restricted by nets. At high soil bulk density, root growth was drastically decreased. However, hyphae of G. mosseae absorbed P even from highly compacted soil, and induced a P-depletion zone of about 30 mm from the root surface. In consequence, at higher soil bulk density shoot P concentration and the total amount of P in the shoot were higher in mycorrhizal than in nonmycorrhizal plants. This experiment showed that hyphae of G. mosseae are more efficient in obtaining P from compacted soil than mycorrhizal or nonmycorrhizal roots of red clover. Key words: arbuscular mycorrhiza, phosphorus, red clover (Trifolium pratense L.), soil bulk density, soil compaction.


Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.


Author(s):  
L. E. Osborne

Attempts to solve the problem of transmitting high engine power to the drawbar have resulted in a variety of tractor designs. Measured rates of work on two- and four-wheel drive tractors and a tracklayer showed that while the four-wheel drive had the highest output, the tracklayer was more efficient for heavy draught operation. The two-wheel drive machine has a higher rolling resistance than the four-wheel drive and methods of measuring rolling resistance are described. The paper discusses the reasons that different performances are obtained from two- and four-wheel drive vehicles of the same engine power, and highlights some of the advantages to be gained. Previous theoretical work on two- and four-wheel drive tractor performance and on transmissions for four-wheel drive is also discussed, together with practical limitations on tyre size for operation under certain conditions. A small survey to measure tyre and track wear is described and a method is suggested of relating tyre wear to work done by quoting tyre costs per gallon of fuel used. The paper concludes with a few comments on soil compaction.


Sign in / Sign up

Export Citation Format

Share Document