scholarly journals Harmonisation of a large-scale historical database with the actual Czech soil classification system

2020 ◽  
Vol 15 (No. 2) ◽  
pp. 101-115 ◽  
Author(s):  
Tereza Zádorová ◽  
Daniel Žížala ◽  
Vít Penížek ◽  
Aleš Vaněk

The possibility of the adequate use of data and maps from historical soil surveys depends, to a large measure, on their harmonisation. Legacy data originating from a large-scale national mapping campaign, “Systematic soil survey of agricultural soils in Czechoslovakia (SSS, 1961–1971)”, were harmonised and converted according to the actual system of soil classification and descriptions used in Czechia – the Czech taxonomic soil classification system (CTSCS). Applying the methods of taxonomic distance and quantitative analysis and reclassification of the selected soil properties, the conversion of two types of mapping soil units with different detailed soil information (General soil representative (GSR), and Basic soil representative (BSR)) to their counterparts in the CTSCS has been effectuated. The results proved the good potential of the used methods for the soil data harmonisation. The closeness of the concepts of the two classifications was shown when a number of soil classes had only one counterpart with a very low taxonomic distance. On the contrary, soils with variable soil properties were approximating several related units. The additional information on the soil skeleton content, texture, depth and parent material, available for the BSR units, showed the potential in the specification of some units, though the harmonisation of the soil texture turned out to problematic due to the different categorisation of soil particles. The validation of the results in the study region showed a good overall accuracy (75% for GSR, 76.1% for BSR) for both spatial soil units, when better performance has been observed in BSR. The conversion accuracy differed significantly in the individual soil units, and ranged from almost 100% in Fluvizems to 0% in Anthropozems. The extreme cases of a complete mis-classification can be attributed to inconsistencies originating in the historical database and maps. The study showed the potential of modern quantitative methods in the legacy data harmonisation and also the necessity of a critical approach to historical databases and maps.

2020 ◽  
Author(s):  
Tereza Zádorová ◽  
Jan Skála ◽  
Vít Penížek ◽  
Daniel Žížala ◽  
Aleš Vaněk

<p>The possibility of an adequate use of data and maps from historical soil surveys depends, to a large measure, on their harmonisation. Legacy data originating from a large-scale national mapping campaign, “Systematic soil survey of agricultural soils in Czechoslovakia (SSS, 1961–1971)”, were harmonised and converted according to the World Reference Base 2014 (WRB). Applying three different methods of taxonomic distance computation and quantitative analysis and reclassification of the selected soil properties, the conversion of so-called Basic soil representatives (BSR) – mapping soil units providing information about soil (type, subtype, variety) and lithology (parent material, texture, soil depth, skeleton content) – to their counterparts in the WRB has been effectuated. The results proved the good potential of the used methods for soil data harmonisation. The values of taxonomic distance correspond to the different concepts and settings of the soil classes in the harmonized soil classifications. Classes with specific and narrowly defined diagnostics, often with one or few strong and distinctive features, show close distances with their counterparts, and, often, have only one relevant counterpart. On the contrary, soils with variable soil properties were approximating several related units. The additional information on the soil skeleton content, texture, depth and parent material showed the potential in the specification of some units, though the harmonisation of the soil texture turned out to be problematic due to the different categorisation of soil particles. The resulting soil classes have been presented for each polygon (so-called soil district) as i) one to one conversion, when each BSR is converted to one, most probable, WRB soil class (Reference soil group, RSG) and ii) soil association corresponding to the three closest RSGs. The validation of the results in the study region showed an average overall accuracy for a one-to-one (59.4 %) conversion and a very good accuracy (83.8 %) for the polygons presented as soil associations. The conversion accuracy differed significantly in the individual soil units, and ranged from 92 % in Fluvizems to 0 % in Technosols and Histosols. The extreme cases of a complete mis-classification can be attributed to inconsistencies originating in the historical database and maps. The study showed the potential of modern quantitative methods in the legacy data harmonisation and also the necessity of a critical approach to historical databases and maps.</p><p>Supported by the Ministry of Agriculture of the Czech Republic, Project No. QK1820389.</p>


Soil Research ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 519
Author(s):  
H. F. Teng ◽  
R. A. Viscarra Rossel ◽  
R. Webster

Differences between local systems of soil classification hinder the communication between pedologists from different countries. The FAO–UNESCO Soil Map of the World, as a fruit of world-wide collaboration between innumerable soil scientists, is recognised internationally. Ideally, pedologists should be able to match whole classes in their local systems to those in an international soil classification system. The Australian Soil Classification (ASC) system, created specifically for Australian soil, is widely used in Australia, and Australian pedologists wish to translate the orders they recognise into the FAO soil units when writing for readers elsewhere. We explored the feasibility of matching soil orders in the ASC to units in the FAO legend using a multivariate analysis. Twenty soil properties, variates, of 4927 profiles were estimated from their visible–near infrared reflectance (vis–NIR) spectra. We arranged the profiles in a Euclidean 20-dimensional orthogonal vector space defined by standardised variates. Class centroids were computed in that space, and the Euclidean distances between the centroids of the ASC orders and units in the FAO scheme were also computed. The shortest distance between a centroid of any ASC order and one of units in the FAO classification was treated as a best match. With only one exception the best matches were those that an experienced pedologist might expect. Second and third nearest neighbours in the vector space provided additional insight. We conclude that vis–NIR spectra represent sufficiently well the essential characters of the soil and so spectra could form the basis for the development of a universal soil classification system. In our case, we could assign with confidence the orders of the ASC to the units of the FAO scheme. A similar approach could be applied to link other national classification systems to one or other international systems of soil classification.


2020 ◽  
Author(s):  
Robert Minařík ◽  
Daniel Žížala ◽  
Anna Juřicová

<p>Legacy soil data arising from traditional soil surveys are an important resource for digital soil mapping. In the Czech Republic, a large-scale (1:10 000) mapping of agricultural land was completed in 1970 after a decade of field investigation mapping. It represents a worldwide unique database of soil samples by its national extent and detail. This study aimed to create a detailed map of soil properties (organic carbon, ph, texture, soil unit) by using state-of-the-art digital soil mapping (DSM) methods. For this purpose we chose four geomorphologically different areas (2440 km<sup>2</sup> in total). A selected ensemble machine learning techniques based on bagging, boosting and stacking with random hyperparameters tuning were used to model each soil property. In addition to soil sample data, a DEM and its derivatives were used as common covariate layers. The models were evaluated using both internal repeated cross-validation and external validation. The best model was used for prediction of soil properties. The accuracy of prediction models is comparable with other studies. The resulting maps were also compared with the available original soil maps of the Czech Republic. The new maps reveal more spatial detail and natural variability of soil properties resulting from the use of DEM. This combination of high detailed legacy data with DSM results in the production of more spatially detailed and accurate maps, which may be particularly beneficial in supporting the decision-making of stakeholders.</p><p>The research has been supported by the project no. QK1820389 " Production of actual detailed maps of soil properties in the Czech Republic based on database of Large-scale Mapping of Agricultural Soils in Czechoslovakia and application of digital soil mapping" funding by Ministry of Agriculture of the Czech Republic.</p>


2020 ◽  
pp. 5-20
Author(s):  
M. I. Gerasimova ◽  
N. B. Khitrov ◽  
I. I. Lebedeva

The basic three-component classification system of soils of the world was published by V.M. Fridland in 1982, and its profile-genetic component was taken as a basis for the classification of soils of Russia (1997– 2004–2008). Unlike the former systems, in that of Fridland the priority is given to soil properties, and this conceptual background is transferred into the new Russian system. The substantive-genetic principles of both systems are implemented in diagnostic horizons and genetic properties; both systems have similar hierarchy of taxa, nomenclature, keys. Changes introduced in the classification of soils of Russia derive either of proposals forwarded in the course of its application, or of information accumulated. They concern the improvement of definitions and introduction of new diagnostic elements; however, the main principles are preserved in the existing and forthcoming versions.  


2014 ◽  
Vol 63 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Erika Michéli ◽  
M. Fuchs ◽  
V. Láng ◽  
T. Szegi ◽  
G. Kele

The current Hungarian Soil Classification System (HSCS) was elaborated during the 1960s, based on the genetic principles of Dokuchaev. It was developed before sufficient data and modern data processing tools were available and served different purposes than current users need or apply it for.The central unit is the soil type, grouping soils that were believed to have developed under similar soil-forming factors and processes. The major soil type is the highest category that groups soils based on climatic, geographical and genetic bases. Subtypes and varieties are distinguished according to the assumed dominance of soil-forming processes and observable/measurable morphogenetic properties. STEFANOVITS (1963) defined the 23 soil-forming processes that have a dominant impact on the differentiation of the 39 soil types of the system.Based on accumulated data and experience, as well as on numerical tools for defining taxonomic relationships a modernization process was carried out. The process included: linking processes to diagnostics, review and numerical study of similarities and dissimilarities of existing units, development of new central units, development of a computer assisted key, and definition of methodology to derive the lower level units. The new, 15 soil types are defined by stronger morphogenetic and measurable criteria, but with the application of legacy data and the developed key, the earlier units can be converted to the new ones, hence the value of legacy data can be preserved.


2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Dorota Kawalko ◽  
Paweł Jezierski ◽  
Cezary Kabala

The elimination of flooding and lowering of the groundwater table after large-scale river regulation allow deep penetration of soils by plant roots, soil fauna, and microorganisms, thus creating favorable conditions for advanced pedogenesis. Although the changes of the morphology and properties of agriculturally used drained alluvial soils in Central Europe have been well characterized, studies in riparian forests remain insufficient. An analysis of 21 profiles of forest soils located on the Holocene river terrace (a floodplain before river regulation and embankment) in SW Poland confirmed a noticeable pedogenic transformation of soil morphology and properties resulting from river regulation. Gleyic properties were in most profiles replaced with stagnic properties, testifying to a transition from dominant groundwater supply to precipitation-water supply. The development of a diagnostic mollic and cambic horizons, correlated with the shift in soil classification from Fluvisols to Phaeozems, and in the majority, to Cambisols, demonstrated a substantial change in habitat conditions. The transformation of alluvial soils may result in an inevitable modification of forest management in the river valley, including quantitative alteration in species composition of primarily riparian forests.


Sign in / Sign up

Export Citation Format

Share Document