scholarly journals   Long-term agrichemical use leads to alterations in bacterial community diversity

2012 ◽  
Vol 58 (No. 10) ◽  
pp. 452-458 ◽  
Author(s):  
H. Tan ◽  
M. Barret ◽  
O. Rice ◽  
D.N. Dowling ◽  
J. Burke ◽  
...  

  Bacterial communities are key drivers of soil fertility and agriculture productivity. Understanding how soil bacterial communities change in response to different conditions is an important aspect in the development of sustainable agriculture. There is a desire to reduce the current reliance on high inputs of chemicals and fertilisers in agriculture, but limited data are available on how this might impact soil bacterial communities. This study investigated the bacterial communities in a spring barley monoculture site subjected to two different input regimes for over 12 years: a conventional chemical/fertiliser regime, and a reduced input regime. A culture independent approach was performed to compare the bacterial communities through 16S rRNA gene PCR-DGGE. PCO analysis revealed that the rhizosphere has a strong structuring effect on the bacterial community. Moreover, high inputs of agrichemicals lead to an increase of phosphorus level in the soil and a concomitant reduction of the bacterial diversity. These results may help to evaluate the environmental risks associated with agrichemical usage.  

2017 ◽  
Vol 63 (5) ◽  
pp. 392-401 ◽  
Author(s):  
Wei Sun ◽  
Xun Qian ◽  
Jie Gu ◽  
Xiao-Juan Wang ◽  
Yang Li ◽  
...  

Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%–6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.


2011 ◽  
Vol 77 (23) ◽  
pp. 8241-8248 ◽  
Author(s):  
Anna Lazzaro ◽  
Andreas Gauer ◽  
Josef Zeyer

ABSTRACTStudies on the effect of environmental conditions on plants and microorganisms are a central issue in ecology, and they require an adequate experimental setup. A strategy often applied in geobotanical studies is based on the reciprocal transplantation of plant species at different sites. We adopted a similar approach as a field-based tool to investigate the relationships of soil bacterial communities with the environment. Soil samples from two different (calcareous and siliceous) unvegetated glacier forefields were reciprocally transplanted and incubated for 15 months between 2009 and 2010. Controls containing local soils were included. The sites were characterized over time in terms of geographical (bedrock, exposition, sunlight, temperature, and precipitation) and physicochemical (texture, water content, soluble and nutrients) features. The incubating local (“home”) and transplanted (“away”) soils were monitored for changes in extractable nutrients and in the bacterial community structure, defined through terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene. Concentrations of soluble ions in most samples were more significantly affected by seasons than by the transplantation. For example, NO3−showed a seasonal pattern, increasing from 1 to 3 μg NO3−(g soil dry weight)−1after the melting of snow but decreasing to <1 μg NO3−(g soil dry weight)−1in autumn. Seasons, and in particular strong precipitation events occurring in the summer of 2010 (200 to 300 mm of rain monthly), were also related to changes of bacterial community structures. Our results show the suitability of this approach to compare responses of bacterial communities to different environmental conditions directly in the field.


2020 ◽  
Author(s):  
Pamela Bhattacharya ◽  
Samrat Mondol ◽  
Gautam Talukdar ◽  
Gopal Singh Rawat

AbstractSoil heterotrophic respiration-driven CO2 emissions, its impact on global warming and the mechanistic roles of soil bacterial communities in this process have been an area of active research. However, our knowledge regarding the effects of environmental changes on soil bacterial communities is limited. To this end, the climate-sensitive high-altitude alpine ecosystems offer ideal opportunities to investigate relationship between climate change and bacterial communities. While data from several high-altitude mountain regions suggest that local environment factors and geological patterns govern bacterial communities, no information is available from the Himalaya. Here we provide baseline information on seasonal soil bacterial community diversity and composition along a 3200-4000 m elevation gradient covering four alpine habitats (subalpine forest, alpine scrub, alpine meadow and moraine) in Gangotri National Park, western Himalaya. Bacterial metabarcoding data from 36 field-collected samples showed no elevation trend in the bacterial richness and a non-monotonous decrease in their diversity. Further, their community diversity and composition varied significantly among habitats along elevation but were stable seasonally within each habitat. The richness was primarily influenced by soil inorganic carbon (SOC) and total nitrogen (TN), whereas temperature, SOC and TN affected diversity and composition patterns. Given the importance of the Himalaya in the context of global carbon cycle this information will help in accurate modeling of climate adaptation scenarios of bacterial niches and their downstream impacts towards climate warming.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1329
Author(s):  
Zhi Yu ◽  
Kunnan Liang ◽  
Guihua Huang ◽  
Xianbang Wang ◽  
Mingping Lin ◽  
...  

Soil bacterial communities play crucial roles in ecosystem functions and biogeochemical cycles of fundamental elements and are sensitive to environmental changes. However, the response of soil bacterial communities to chronosequence in tropical ecosystems is still poorly understood. This study characterized the structures and co-occurrence patterns of soil bacterial communities in rhizosphere and bulk soils along a chronosequence of teak plantations and adjacent native grassland as control. Stand ages significantly shifted the structure of soil bacterial communities but had no significant impact on bacterial community diversity. Bacterial community diversity in bulk soils was significantly higher than that in rhizosphere soils. The number of nodes and edges in the bacterial co-occurrence network first increased and then decreased with the chronosequence. The number of strongly positive correlations per network was much higher than negative correlations. Available potassium, total potassium, and available phosphorus were significant factors influencing the structure of the bacterial community in bulk soils. In contrast, urease, total potassium, pH, and total phosphorus were significant factors affecting the structure of the bacterial community in the rhizosphere soils. These results indicate that available nutrients in the soil are the main drivers regulating soil bacterial community variation along a teak plantation chronosequence.


2020 ◽  
Vol 96 (4) ◽  
Author(s):  
Syrie M Hermans ◽  
Matthew Taylor ◽  
Gwen Grelet ◽  
Fiona Curran-Cournane ◽  
Hannah L Buckley ◽  
...  

ABSTRACT Bacterial communities are crucial to soil ecosystems and are known to be sensitive to environmental changes. However, our understanding of how present-day soil bacterial communities remain impacted by historic land uses is limited; implications for their functional potential are especially understudied. Through 16S rRNA gene amplicon and shotgun metagenomic sequencing, we characterized the structure and functional potential of soil bacterial communities after land use conversion. Sites converted from pine plantations to dairy pasture were sampled five- and eight-years post conversion. The bacterial community composition and functional potential at these sites were compared to long-term dairy pastures and pine forest reference sites. Bacterial community composition and functional potential at the converted sites differed significantly from those at reference sites (P = 0.001). On average, they were more similar to those in the long-term dairy sites and showed gradual convergence (P = 0.001). Differences in composition and functional potential were most strongly related to nutrients such as nitrogen, Olsen P and the carbon to nitrogen ratio. Genes related to the cycling of nitrogen, especially denitrification, were underrepresented in converted sites compared to long-term pasture soils. Together, our study highlights the long-lasting impacts land use conversion can have on microbial communities, and the implications for future soil health and functioning.


Author(s):  
Zhanbin Luo ◽  
Jing Ma ◽  
Fu Chen ◽  
Xiaoxiao Li ◽  
Huping Hou ◽  
...  

Soil microorganisms play a key role in global biogeochemical changes. To understand the interactions among soil bacterial communities and their responses to extreme environments, the soil properties and bacterial community diversity were determined in the post-mining ecosystem of the Loess Plateau, China. The results showed that the soil temperature, pH, organic matter, available phosphorus, and available potassium values were significantly reduced in the post-mining cracks area. However, the richness and uniformity of soil bacterial communities increased by about 50% in the post-mining cracks area. Soil microbial community structure and the network interactions tended to be complex and strengthened in the post-mining cracks area. Moreover, soil nutrient loss caused the differences in soil bacterial community structure compositions in the post-mining cracks area. Furthermore, the relationships between soil physicochemical properties and different modules of the soil bacterial molecular ecological network were changed in a complex manner in the post-mining cracks area. This study provides a theoretical basis for adaptive management and response to cracks in post-mining areas and under other extreme conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259515
Author(s):  
Fating Yin ◽  
Fenghua Zhang ◽  
Haoran Wang

Soil salinity is a serious environmental issue in arid China. Halophytes show extreme salt tolerance and are grow in saline-alkaline environments. There rhizosphere have complex bacterial communities, which mediate a variety of interactions between plants and soil. High-throughput sequencing was used to investigated rhizosphere bacterial community changes under the typical halophyte species in arid China. Three typical halophytes were Leymus chinensis (LC), Puccinellia tenuiflora (PT), Suaeda glauca (SG). The dominant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Acidobacteria and Bacteroidetes, Suaeda glauca rhizosphere has stronger enrichment of Nitrospirae and Cyanobacteria. The Ace, Chao and Shannon indices were significantly higher in soils under LC and SG (P<0.05). Functional predictions, based on 16S rRNA gene by PICRUSt, indicated that Energy metabolism, Amino acid metabolism, Carbohydrate metabolism and Fatty acid metabolism are dominant bacterial functions in three halophytes rhizosphere soil. Carbon metabolism, Oxidative phosphorylation, Methane metabolism, Sulfur metabolism and Nitrogen metabolism in SG were significantly higher than that in LC and PT. Regression analysis revealed that rhizosphere soil bacterial community structure is influenced by soil organic matter (SOM) and soil water content (SWC), while soil bacterial community diversity is affected by soil pH. This study contributes to our understanding of the distribution characteristics and metabolic functions under different halophyte rhizosphere bacterial communities, and will provide references for the use of rhizosphere bacteria to regulate the growth of halophytes and ecological restoration of saline soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Li ◽  
Ang Song ◽  
Hui Yang ◽  
Werner E. G. Müller

Microorganisms play critical roles in belowground ecosystems, and karst rocky desertification (KRD) control affects edaphic properties and vegetation coverage. However, the relationship between KRD control and soil bacterial communities remains unclear. 16S rRNA gene next-generation sequencing was used to investigate soil bacterial community structure, composition, diversity, and co-occurrence network from five ecological types in KRD control area. Moreover, soil physical-chemical properties and soil stoichiometry characteristics of carbon, nitrogen and phosphorus were analyzed. Soil N and P co-limitation decreased in the contribution of the promotion of KRD control on edaphic properties. Though soil bacterial communities appeared strongly associated with soil pH, soil calcium, soil phosphorus and plant richness, the key factor to determine their compositions was the latter via changed edaphic properties. The co-occurrence network analysis indicated that soil bacterial network complexity in natural ecosystem was higher than that in additional management ecosystem. Candidatus Udaeobacter, Chthoniobacterales, and Pedosphaeraceae were recognized as the key taxa maintaining karst soil ecosystems in KRD control area. Our results indicate that natural recovery is the suitable way for restoration and rehabilitation of degraded ecosystems, and thus contribute to the ongoing endeavor to appraise the interactions among soil-plant ecological networks.


2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

2009 ◽  
Vol 75 (15) ◽  
pp. 5111-5120 ◽  
Author(s):  
Christian L. Lauber ◽  
Micah Hamady ◽  
Rob Knight ◽  
Noah Fierer

ABSTRACT Soils harbor enormously diverse bacterial populations, and soil bacterial communities can vary greatly in composition across space. However, our understanding of the specific changes in soil bacterial community structure that occur across larger spatial scales is limited because most previous work has focused on either surveying a relatively small number of soils in detail or analyzing a larger number of soils with techniques that provide little detail about the phylogenetic structure of the bacterial communities. Here we used a bar-coded pyrosequencing technique to characterize bacterial communities in 88 soils from across North and South America, obtaining an average of 1,501 sequences per soil. We found that overall bacterial community composition, as measured by pairwise UniFrac distances, was significantly correlated with differences in soil pH (r = 0.79), largely driven by changes in the relative abundances of Acidobacteria, Actinobacteria, and Bacteroidetes across the range of soil pHs. In addition, soil pH explains a significant portion of the variability associated with observed changes in the phylogenetic structure within each dominant lineage. The overall phylogenetic diversity of the bacterial communities was also correlated with soil pH (R2 = 0.50), with peak diversity in soils with near-neutral pHs. Together, these results suggest that the structure of soil bacterial communities is predictable, to some degree, across larger spatial scales, and the effect of soil pH on bacterial community composition is evident at even relatively coarse levels of taxonomic resolution.


Sign in / Sign up

Export Citation Format

Share Document