scholarly journals Investigations on ornithobacterium rhinotracheale in broiler flocks in elazig province located in the east of turkey

2012 ◽  
Vol 49 (No. 8) ◽  
pp. 305-311 ◽  
Author(s):  
G. Ozbey ◽  
H. Ongor ◽  
D. T Balik ◽  
V. Celik ◽  
A. Kilic ◽  
...  

In the present study, lung, trachea and serum samples from broiler flocks slaughtered at an abattoir in Elazig province located in the East of Turkey were examined for the presence of Ornithobacterium rhinotracheale using culture and enzyme-linked immunosorbent assay (ELISA). The identity was latter proved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot analysis, and polymerase chain reaction (PCR) assays. A total of 324 serum and 250 lung and trachea samples were collected from 10 commercially reared chicken flocks showing respiratory manifestations. The samples were obtained from different flocks. The causative agent (ORT) was isolated from trachea (1.5%) of five chickens and from both lung and trachea (0.4%) of only one chicken in the bacteriological examination of tissues. The presence of antibodies against ORT was detected in 33 (10.2%) of the 324 sera by ELISA. A 784 bp fragment of the 16S rRNA gene was amplified using specific primers in the PCR. All ORT isolates that were positive by culture were also detected to be positive by the PCR. SDS-PAGE protein profiles of whole cell extracts showed a high similarity for all the isolates with a major band of the molecular weight of 33 kDa (kiloDalton). Results of Western blot analysis indicate four antigenic fractions predominantly with molecular weights of 33, 42, 52 and 66 kDa.

2020 ◽  
Vol 13 (1) ◽  
pp. 141-146
Author(s):  
Nagwa I. Toaleb ◽  
Mohamed S. Helmy ◽  
Eman E. El Shanawany ◽  
Eman H. Abdel-Rahman

Background: Cystic echinococcosis (CE), a zoonotic disease that affects animal and human health, is of increasing economic importance due to high morbidity rates and high economic losses in the livestock industry. Aim: The present study was conducted to purify the antigen from hydatid cyst fluid (HCF) with high diagnostic efficacy of camel hydatidosis using indirect enzyme-linked immunosorbent assay (ELISA). Materials and Methods: The HCF antigen was purified using Sephacryl S-300 column chromatography. Characterization of fractions was performed using reducing and non-reducing sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. Further, antibodies against Echinococcus granulosus cysts in camel serum were detected using indirect ELISA. Results: The purification process resulted in three fractions of antigens: FI, FII, and FIII. Indirect ELISA showed that higher diagnostic efficacy was observed in FI than in FII and FIII. Indirect ELISA, in which FI was utilized, showed 88% sensitivity and 91.7% specificity. Non-reducing SDS-PAGE showed that FI had two bands of molecular weights 120 and 60 kDa. Western blot analysis of FI demonstrated that 60, 38, and 22 kDa were antigenic bands when reacted with naturally infected camel sera with E. granulosus cysts. Using indirect ELISA, F1 recorded an infection percentage of 81.7% in randomly collected camel serum samples. Conclusion: FI is a promising antigen for accurate diagnosis of camel CE using indirect ELISA.


1999 ◽  
Vol 6 (3) ◽  
pp. 400-404 ◽  
Author(s):  
Chad A. Ray ◽  
Linda E. Gfell ◽  
Tiffany L. Buller ◽  
Richard L. Gregory

ABSTRACT Streptococcus mutans has been implicated as the major causative agent of human dental caries. S. mutans binds to saliva-coated tooth surfaces, and previous studies suggested that fimbriae may play a role in the initial bacterial adherence to salivary components. The objectives of this study were to establish the ability of an S. mutans fimbria preparation to bind to saliva-coated surfaces and determine the specific salivary components that facilitate binding with fimbriae. Enzyme-linked immunosorbent assay (ELISA) established that the S. mutans fimbria preparation bound to components of whole saliva. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot techniques were used to separate components of whole saliva and determine fimbria binding. SDS-PAGE separated 15 major protein bands from saliva samples, and Western blot analysis indicated significant binding of the S. mutans fimbria preparation to a 52-kDa salivary protein. The major fimbria-binding salivary protein was isolated by preparative electrophoresis. The ability of the S. mutans fimbria preparation to bind to the purified salivary protein was confirmed by Western blot analysis and ELISA. Incubation of the purified salivary protein with the S. mutans fimbria preparation significantly neutralized binding of the salivary protein-fimbria complex to saliva-coated surfaces. The salivary protein, whole saliva, and commercial amylase reacted similarly with antiamylase antibody in immunoblots. A purified 65-kDa fimbrial protein was demonstrated to bind to both saliva and amylase. These data indicated that the S. mutans fimbria preparation and a purified fimbrial protein bound to whole-saliva-coated surfaces and that amylase is the major salivary component involved in the binding.


2000 ◽  
Vol 12 (4) ◽  
pp. 247
Author(s):  
Chun Wook Park ◽  
Sang Dong Kim ◽  
Cheol Heon Lee ◽  
Dong-Kyu Lee

1992 ◽  
Vol 24 (6) ◽  
pp. 311-317 ◽  
Author(s):  
Nalin Rastogi ◽  
Valérie Labrousse ◽  
Claude Barreau

Author(s):  
Nur Basirah Ghazali ◽  
Michael Steele ◽  
David Koh ◽  
Adi Idris

Abstract Disruption in circadian rhythm affects the production of inflammatory cytokines. Understanding how it behaves in diseased conditions is essential. Despite the role of the interleukin-1β (IL-1β), a potent inflammatory cytokine, in human diseases, little is known about the steady-state circadian rhythm of IL-1β in healthy individuals. This short study investigates the diurnal pattern of salivary IL-1β throughout the day in healthy young adults. Twelve participants provided saliva samples at various times throughout the day. Salivary IL-1β were assessed using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Salivary IL-1β levels were highest at 0430 h and lowest at 0000 h and shared a similar diurnal pattern to that of salivary IL-6. Western blot analysis showed that these levels correspond to the mature form of IL-1β. Our findings are important as it established the diurnal pattern of salivary IL-1β is fluctuating normally throughout the day. The findings also open an incredible opportunity for developing research conducted in the field with saliva as the diagnostic tool.


1995 ◽  
Vol 69 (4) ◽  
pp. 369-371 ◽  
Author(s):  
A. Ito ◽  
Y. Osawa ◽  
M. Nakao ◽  
T. Horii ◽  
M. Okamoto ◽  
...  

AbstractThe assay system for antibody responses against Em2, the most specific antigen for serodiagnosis of alveolar echinococcosis (AE), has been established by enzyme-linked immunosorbent assay (ELISA) but not by Western blot assay, since Em2 antigen is not protein but carbohydrate in nature. Recently we reported that previously undescribed protein epitopes, designated Em18 and Em16 due to their molecular weights, were good serologic markers for AE by Western blot analysis. It has been shown that Em18 and Em16 are the only two epitopes recognized by commercially available weak positive (cut off) sera for the Em2plus-ELISA.


2001 ◽  
Vol 69 (7) ◽  
pp. 4295-4302 ◽  
Author(s):  
John L. Dahl ◽  
Jun Wei ◽  
James W. Moulder ◽  
Suman Laal ◽  
Richard L. Friedman

ABSTRACT Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designatedeis, was found to enhance intracellular survival ofMycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377–384, 2000). Wheneis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eisgene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product ofeis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.


2021 ◽  
Author(s):  
Huixin Zhang ◽  
Yeye Li ◽  
Zhongjie Liu

Abstract Background: Intestinal mucosal microvascular endothelial cells (MEC) have multiple functions and play an important role in intestinal bowel diseases (IBD). Quercetin is a flavonoid found in many plants and fruits. It was reported that quercetin can treat several gastrointestinal cancers, but its effect on bacterial enteritis and pyroptosis-related diseases has been rarely studied. This article aims to explore the effect and mechanism of quercetin on inflammatory injury and pyroptosis of RIMVECs.Methods: The inflammatory damage and pyroptosis in RIMVECs were induced by LPS and ATP. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot analysis, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence methods were used to detect TLR4/NF-κB/NLRP3 pathways, inflammatory factors (IL-1β and IL-18) and pyroptosis-related proteins (Caspase-1 and GSDMD). The expression and distribution of ZO-1 were detected by western blot analysis and immunofluorescence method. The late apoptosis and necrosis of cells were measured by cell flow cytometry. Results: The results showed that different concentrations (5, 10, 20μM) of quercetin not only significantly reduced the protein and mRNA levels of TLR4, NLRP3, Caspase-1 and GSDMD, but also down-regulated the protein expression, mRNA and secretion of IL-1β and IL-18. Quercetin also inhibited the phosphorylation of NF-κB p65 and the degradation of IκB. At the same time, quercetin increased the cell migration rate and the expression level of ZO-1, and reduced the number of late apoptotic cells (P<0.05). Conclusions: Our data indicated that Quercetin reduced the inflammatory response and pyroptosis induced by LPS/ATP through the TLR4/NF-κB/NLRP3 pathway, and protected the migration and tight junctions of RIMVECs.


Sign in / Sign up

Export Citation Format

Share Document