scholarly journals Porcine pleuropneumonia: the first evaluation of field efficacy of a subunit vaccine in Croatia

2012 ◽  
Vol 47 (No. 8) ◽  
pp. 213-217 ◽  
Author(s):  
B. Habrun ◽  
V. Bilič ◽  
Ž. Cvetnič ◽  
A. Humski ◽  
M. Benič

A vaccine for porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae was studied in Croatia on a farm infected by agent serotypes 2 and 9. Vaccination with a commercial subunit vaccine was initiated in the second half of 1998 due to the immense economic damage caused on the farm by this disease. All prefattening and fattening pigs kept on the farm during the first three months of 1999 were allocated in two groups: vaccinated and control. In the control and vaccinated group, 226 and 35 animals (5.78% and 0.96% of the average number of prefattening and fattening pigs in control and vaccinated group), respectively, died from pleuropneumonia. The vaccine efficacy was 83.5%. Examination of the randomly selected lungs on the slaughter line revealed significant reduction in the lesions specific for the chronic form of pleuropneumonia in the vaccinated group (vaccine efficacy 78.6%). The tested vaccine significantly decreased the death rate and pulmonary lesions due to A. pleuropneumoniae.

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Xiaomeng Li ◽  
Yuanzhen Tan ◽  
Zheng Zhang ◽  
Yupeng Huang ◽  
Pengfei Mu ◽  
...  

Large yellow croaker (Larimichthys crocea), an economically important marine fish in China, has suffered from serious vibriosis, which has resulted in great economic losses for the large yellow croaker industry. Vaccination has been considered to be a safe and effective method to prevent and control vibriosis. However, due to the complex diversity and serotypes of the Vibrio genus, the progress of Vibrio vaccine development is still slow. In this study, we prepared recombinant Vibrio dihydrolipoamide dehydrogenase (rDLD) protein and investigated its potential as a candidate to be a subunit vaccine against Vibrio. The lysozyme activity and the rDLD-specific antibody level in sera of large yellow croakers immunized with rDLD were significantly higher than those in the control group, and the transcript levels of proinflammatory cytokines (IL-6, IL-8, IL-1β), MHC IIα/β, CD40, CD8α, IL-4/13A, and IL-4/13B were significantly up-regulated in the spleen and head kidney of large yellow croakers immunized with rDLD, suggesting that rDLD could induce both specific and nonspecific immune responses in this species. In addition, rDLD protein increased the survival rate of large yellow croakers against Vibrio alginolyticus and Vibrio parahaemolyticus, with the relative percent of survival (RPS) being 74.5% and 66.9%, respectively. These results will facilitate the development of a potential subunit vaccine against Vibrio in large yellow croaker aquaculture.


2002 ◽  
Vol 70 (11) ◽  
pp. 6464-6467 ◽  
Author(s):  
J. N. Seah ◽  
J. Frey ◽  
J. Kwang

ABSTRACT We expressed three Actinobacillus pleuropneumoniae ApxI deletion derivatives to map the domain that could induce protective immunity. Antiserum to ApxI N-terminal covered by residues 40 to 380 was found to neutralize ApxI hemolytic activity but not ApxIII cytotoxicity. When used as a subunit vaccine in mice, this recombinant N-terminal fragment elicited protection against lethal infection with heterologous A. pleuropneumoniae serovars.


2018 ◽  
pp. 26-29
Author(s):  
V. S. Rusaleyev

Porcine pleuropneumonia is an infectious contagious disease caused by bacteria Actinobacillus pleuropneumoniae. Currently, the disease is widespread in many countries with well-developed pig production. The disease causes significant economic damage to farms due to the large mortality and expenses for treatment of diseased pigs and implementation of veterinary and sanitary measures. Due to increased number of Actinobacillus pleuropneumoniae cases in pigs, and the emergence of actinobacillus-resistant forms, it is necessary to perform a more thorough study and discussion of this problem. The disease epidemic surveillance is based on continuous monitoring aimed at porcine Actinobacillus pleuropneumoniae identification, confirmation and registration, determination of its characteristics and trends in development of sensitivity to antimicrobial preparations. The article addresses the topic of antibiotic use and the antibiotic resistance of microorganisms, which is actual not only for veterinary medicine but also for medicine. The model of swine Actinobacillus pleuropneumoniae was used to study the reasons of antibiotic resistance. Possible approaches to overcoming the resistance of actinobacilli to antibiotics have been discussed. The prospects for the use of antibiotics were discussed in detail to cope with this problem. Targeted surveillance, aimed at monitoring and collecting information on the prescription of antibiotics is of great importance for the solution of the problem of antibiotic resistance. The information obtained from the monitoring can be used for development of the plan and strategy for the use of antibacterial preparations (preparation selection, dose, route of administration, frequency, number of courses), development and implementation of more effective approaches to the treatment of Actinobacillus pleuropneumoniae in pigs, control of the antibiotic-resistant bacteria occurrence and spread.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Lukas Schuwerk ◽  
Doris Hoeltig ◽  
Karl-Heinz Waldmann ◽  
Peter Valentin-Weigand ◽  
Judith Rohde

AbstractSerotyping is the most common method to characterize field isolates of Actinobacillus (A.) pleuropneumoniae, the etiological agent of porcine pleuropneumonia. Based on serology, many farms seem to be infected and antibodies against a wide variety of serovars are detectable, but, so far it is unknown to what degree respective serovars contribute to outbreaks of clinical manifest disease. In this study, 213 German A. pleuropneumoniae field isolates retrieved for diagnostic purposes from outbreaks of porcine pleuropneumonia between 2010 and 2019 were genetically serotyped and analyzed regarding their apx-toxin gene profile using molecular methods. Serotyping revealed a prominent role of serovar 2 in clinical cases (64% of all isolates) and an increase in the detection of this serovar since 2010 in German isolates. Serovar 9/11 followed as the second most frequent serovar with about 15% of the isolates. Furthermore, very recently described serovars 16 (n = 2) and 18 (n = 8) were detected. Most isolates (93.4%) showed apx-profiles typical for the respective serovar. However, this does not hold true for isolates of serovar 18, as 75% (n = 6) of all isolates of this serovar deviated uniformly from the “typical” apx-gene profile of the reference strain 7311555. Notably, isolates from systemic lesions such as joints or meninges did not harbor the complete apxICABD operon which is considered typical for highly virulent strains. Furthermore, the extremely low occurrence (n = 1) of NAD independent (biovar II) isolates in German A. pleuropneumoniae was evident in our collection of clinical isolates.


2021 ◽  
pp. 101329
Author(s):  
Emanuel Gumina ◽  
Jeffrey W. Hall ◽  
Bruno Vecchi ◽  
Xochitl Hernandez-Velasco ◽  
Brett Lumpkins ◽  
...  

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Kexin Zhu ◽  
Dong Yu ◽  
Jiahui An ◽  
Yufeng Li

AbstractGlässer’s disease is caused by the agent Glaesserella parasuis and is difficult to prevent and control. Candidate screening for subunit vaccines contributes to the prevention of this disease. Therefore, in this study, the inactivated G. parasuis reference serovar 5 strain (G. parasuis-5) was used to generate specific monoclonal antibodies (mAbs) to screen subunit vaccine candidates. Six mAbs (1A12, 3E3, 4C6, 2D1, 3E6, and 4B2) were screened, and they all reacted with the G. parasuis serovar 5 strain according to laser confocal microscopy and flow cytometry (FCM). Indirect enzyme-linked immunosorbent assay (ELISA) showed that one mAb 2D1, can react with all 15 reference serovars of G. parasuis. Protein mass spectrometry and Western blot analysis demonstrated that mAb 2D1 specifically reacts with Fe (3+) ABC transporter substrate-binding protein. A complement killing assay found that the colony numbers of bacteria were significantly reduced in the G. parasuis-5 group incubated with mAb 2D1 (p < 0.01) in comparison with the control group. Opsonophagocytic assays demonstrated that mAb 2D1 significantly enhanced the phagocytosis of 3D4/21 cells by G. parasuis (p < 0.05). RAW264.7 cells with stronger phagocytic ability were also used for the opsonophagocytic assay, and the difference was highly significant (p < 0.01). Passive immunization of mice revealed that mAb 2D1 can eliminate the bacteria in the blood and provide protection against G. parasuis-5. Our study found one mAb that can be used to prevent and control G. parasuis infection in vivo and in vitro, which may suggest that Fe (3+) ABC transporter substrate-binding protein is an immunodominant antigen and a promising candidate for subunit vaccine development.


2021 ◽  
Author(s):  
Jiahao Ma ◽  
Danmei Su ◽  
Yinyan Sun ◽  
Xueqin Huang ◽  
Ying Liang ◽  
...  

Within a year after its emergence, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people worldwide with a death toll over 2 million. Vaccination remains the best hope to ultimately put this pandemic to an end. Here, using Trimer-Tag technology, we produced both wild-type (WT) and furin site mutant (MT) S-Trimers for COVID-19 vaccine studies. Cryo-EM structures of the WT and MT S-Trimers, determined at 3.2 Å and 2.6 Å respectively, revealed that both antigens adopt a tightly closed conformation and their structures are essentially identical to that of the previously solved full-length WT S protein in detergent. The tightly closed conformation is stabilized by fatty acid and polysorbate 80 binding at the receptor binding domains (RBDs) and the N terminal domains (NTDs) respectively. Additionally, we identified an important pH switch in the WT S-Trimer that shows dramatic conformational change and accounts for its increased stability at lower pH. These results validate Trimer-Tag as a platform technology in production of metastable WT S-Trimer as a candidate for COVID-19 subunit vaccine. IMPORTANCE Effective vaccine against SARS-CoV-2 is critical to end the COVID-19 pandemic. Here, using Trimer-Tag technology, we are able to produce stable and large quantities of WT S-Trimer, a subunit vaccine candidate for COVID-19 with high safety and efficacy from animal and Phase 1 clinical trial studies. Cryo-EM structures of the S-Trimer subunit vaccine candidate show that it predominately adopts tightly closed pre-fusion state, and resembles that of the native and full-length spike in detergent, confirming its structural integrity. WT S-Trimer is currently being evaluated in global Phase 2/3 clinical trial. Combining with published structures of the S protein, we also propose a model to dissect the conformation change of the spike protein before receptor binding.


Sign in / Sign up

Export Citation Format

Share Document