scholarly journals Study on the antifungal effect and mycolytic activity of the biocontrol agent Chaetomium subaffine LB-1

Author(s):  
Caiyun Liu ◽  
Jing Zhao ◽  
Hui Cao

The antifungal effect and mucolytic activity of a newly screened biocontrol strain Chaetomium subaffine LB-1 were researched in this study. The results found that LB-1 has good antifungal effects on the test plant pathogenic fungi Botrytis cinerea Pers. ex Fr., Fusarium oxysporum f. sp. cucumerinum Owen and Alternaria solani (Ellis & Martin) Sorauer in dual culture assay, with the inhibition rates of 61.39, 50.34 and 51.22%, respectively. Flocculated and dissolved hyphae of the phytopathogenic fungi were observed at the interaction zone on a dual-cultured PDA plate, but the hyphae of LB-1 were normal. The LB-1 cell-free filtrate has significant inhibitory effects on the three tested fungi in the poison plate assay; dissolved colonies, vesiculated and flocculated hyphae of the test pathogenic fungi were also found on the PDA plates supplemented with the LB-1 cell-free filtrate. Clear halo zones around the LB-1 colonies were found on the protease test plate, pectinase test plate and cellulose test plate, indicating that LB-1 could produce mucolytic enzymes of protease, pectinase and cellulase. However, the activities of chitinase and β-l,3-glucase were not detected on their test plates from LB-1. An obvious oil-displaced circle was formed in the oil spreading test, indicating that a surface-active substance might be contained in the LB-1 cell-free filtrate. These results proved that the biocontrol agent of C. subaffine LB-1 could exert its antifungal effects via living competition and mycolysis, and the latter may be obtained by production of mycolytic enzymes and surface-active substances. .

2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


1998 ◽  
Vol 44 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Emma Frändberg ◽  
Johan Schnürer

Chitinolytic bacteria are used as biocontrol agents of plant pathogenic fungi. They might also potentially inhibit growth of molds, e.g., Aspergillus spp. and Penicillium spp., in stored plant material. We isolated chitinolytic bacteria from airtight stored cereal grain and evaluated their antifungal capacity. Between 0.01 and 0.5% of the total aerobic counts were chitinolytic bacteria. Gram-negative bacteria, mainly Pseudomonadaceae, constituted approximately 80% of the chitinolytic population. Gram-positive isolates belonged predominantly to the Corynebacterium-Arthrobacter group, Streptomyces, and Bacillus. Chitinolytic activity was evaluated using culture filtrates from chitin-grown isolates as the release of p-nitrophenol from p-nitrophenyl N,N'-diacetylchitobiose and as the formation of clearing zones on chitin agar. No correlation between chitinolytic activity and antifungal effects was found when challenging Penicillium roqueforti Dierckx with bacterial isolates on chitin agar in a dual culture bioassay. Fungal hyphae frequently grew seemingly unaffected through the bacterial colony of a high chitinase producer on colloidal chitin. Only 4% of the chitinolytic isolates had strong effects on fungal growth. Among these, Streptomyces halstedii (K122) and Streptomyces coelicolor (K139) inhibited growth of a broad range of fungi. Streptomyces halstedii affected hyphal morphology and decreased the radial growth rate of all fungi investigated. These effects were not caused by volatile metabolites, polyenes, or N-carbamoyl-D-glucosamine.Key words: antifungal, chitinase, Streptomyces halstedii, Streptomyces coelicolor.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Helena Lind ◽  
Anders Broberg ◽  
Karin Jacobsson ◽  
Hans Jonsson ◽  
Johan Schnürer

Dairy propionibacteria are widely used in starter cultures for Swiss type cheese. These bacteria can ferment glucose, lactic acid, and glycerol into propionic acid, acetic acid, and carbon dioxide. This research examined the antifungal effect of dairy propionibacteria when glycerol was used as carbon source for bacterial growth. Five type strains of propionibacteria were tested against the yeastRhodotorula mucilaginosaand the moldsPenicillium communeandPenicillium roqueforti. The conversion of13C glycerol byPropionibacterium jenseniiwas followed with nuclear magnetic resonance. In a dual culture assay, the degree of inhibition of the molds was strongly enhanced by an increase in glycerol concentrations, while the yeast was less affected. In broth cultures, decreased pH in glycerol medium was probably responsible for the complete inhibition of the indicator fungi. NMR spectra of the glycerol conversion confirmed that propionic acid was the dominant metabolite. Based on the results obtained, the increased antifungal effect seen by glycerol addition to cultures of propionibacteria is due to the production of propionic acid and pH reduction of the medium.


2001 ◽  
Vol 8 (3) ◽  
pp. 165-169 ◽  
Author(s):  
A. Smicka ◽  
V. Buchta ◽  
K. Handlir

Six new N-substituted di- and tributyltin 2-aminoethanethiolates (cysteaminates) have been prepared and characterised by H1, C13 and S119n NMR spectroscopy. All these compounds exhibit a good in vitro antifungal effect against selected types of human pathogenic fungi (Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, Trichosporon beigelii, Aspergillus fumigatus, Absidia corymbifera, Trichophyton mentagrophytes) and their activity is comparable with that of some antifungal drugs commonly used in the clinical use like ketoconazole. The structure-activity relationships in these compounds are discussed.


2015 ◽  
Vol 7 (4) ◽  
pp. 412-416
Author(s):  
Mahboobeh NASSERI ◽  
Hossein AROUIEE ◽  
Shiva GOLMOHAMMADZADEH ◽  
Mahmoud Reza JAAFARI ◽  
Hossein NEAMATI

The present study aimed to determine minimum inhibitory concentration and minimum fungicidal concentration of the essential oil of Zataria multiflora to control Alternaria solani, Rhizoctonia solani, Rhizopus stolonifer, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger. The essential oil of Zataria multiflora was tested in vitro on PDA (malt extract agar medium) with eight concentrations: 0, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ppm. This investigation followed the completely randomized design (CRD) with three replications. GC-MS evaluations of the essential oil revealed that thymol (35%), carvacrol (34%), cymene-p (9.89%), gamma-terpinene (5.88%) and alpha-pinene (4.22%) were the main compounds of Zataria multiflora oil. The results showed that the essential oil of Zataria multiflora has antifungal activity; the lowest inhibition (75%) was observed in the A. niger, while the highest inhibition (95.3%) was observed in A. solani. Minimum inhibitory concentration for A. solani, R. solani, R. stolonifer, A. flavus, A. ochraceus and A. niger was 200, 200, 200, 300, 300 and 200 ppm respectively. In addition, the present results showed that minimum fungicidal concentration (MFC) for A. solani, R. solani, R .stolonifer, A. niger and A.ochraceus was 600, 400, 300, 900 and 700 ppm respectively and none of the tested concentrations were fatal for A. flavus. A. solani and R. solani showed a strong sensitivity to Zataria multiflora essential oil at all concentrations. Findings of the current study suggest that essential oils of Zataria multiflora could be used for control of postharvest phytopathogenic fungi on fruits or vegetables.


2019 ◽  
Vol 8 (1) ◽  
pp. 65 ◽  
Author(s):  
Lorena Barra-Bucarei ◽  
Andrés France Iglesias ◽  
Macarena Gerding González ◽  
Gonzalo Silva Aguayo ◽  
Jorge Carrasco-Fernández ◽  
...  

Botrytis cinerea causes substantial losses in tomato and chili pepper crops worldwide. Endophytes have shown the potential for the biological control of diseases. The colonization ability of native endophyte strains of Beauveria bassiana and their antifungal effect against B. cinerea were evaluated in Solanaceae crops. Root drenching with B. bassiana was applied, and endophytic colonization capacity in roots, stems, and leaves was determined. The antagonistic activity was evaluated using in vitro dual culture and also plants by drenching the endophyte on the root and by pathogen inoculation in the leaves. Ten native strains were endophytes of tomato, and eight were endophytes of chili pepper. All strains showed significant in vitro antagonism against B. cinerea (30–36%). A high antifungal effect was observed, and strains RGM547 and RGM644 showed the lowest percentage of the surface affected by the pathogen. Native strains of B. bassiana colonized tomato and chili pepper tissues and provided important levels of antagonism against B. cinerea.


2020 ◽  
Vol 15 (4) ◽  
pp. 273-285 ◽  
Author(s):  
Taynara MT de Lima ◽  
Laís S Arias ◽  
Letícia F Afanaci ◽  
Raphael FB Ferraresse ◽  
Francisco N de S Neto ◽  
...  

Aim: To assemble, characterize and assess the antifungal effects of a new fluconazole (FLZ)-carrier nanosystem. Materials & methods: The nanosystem was prepared by loading FLZ on chitosan (CS)-coated iron oxide nanoparticles (IONPs). Antifungal effects were evaluated on planktonic cells (by minimum inhibitory concentration determination) and on biofilms (by quantification of cultivable cells, total biomass, metabolism and extracellular matrix) of Candida albicans and Candida glabrata. Results: Characterization results ratified the formation of a nanosystem (<320 nm) with FLZ successfully embedded. IONPs-CS-FLZ nanosystem reduced minimum inhibitory concentration values and, in general, showed similar antibiofilm effects compared with FLZ alone. Conclusion: IONPs-CS-FLZ nanosystem was more effective than FLZ mainly in inhibiting Candida planktonic cells. This nanocarrier has potential to fight fungal infections.


2011 ◽  
pp. 111-120
Author(s):  
Dragana Josic ◽  
Radmila Pivic ◽  
Snezana Pavlovic ◽  
Sasa Stojanovic ◽  
Goran Aleksic ◽  
...  

Marshmallow is a host of a number of saprophytic and parasitic fungi in Serbia. The seeds of marshmallow are contaminated with fungi from different genera, especially Alternaria and Fusarium, which significantly reduced seed germination and caused seedling decay. In this study we investigate antagnonism of indigenous Bacillus sp. isolate Q3 against marshmallow mycopopulation. Bacillus sp. Q3 was isolated from maize rhizosphere, characterized by polyphasic approch and tested for plant growth promoting treats. Bacillus sp. Q3 produced antifungal metabolites with growth inhibition activity against numerous fungi in dual culture: 61.8% of Alternaria alternata, 74.8% of Myrothecium verrucaria and 33.6% of Sclerotinia sclerotiorum. That effect could be caused by different antifungal metabolites including siderophores, hydrolytic enzymes, organic acids and indole acetic acid (IAA). Suppression of natural marshmallow seed infection by Q3 isolate was observed. The seeds were immersed in different concentrations of bacterial suspension during 2h and their infections by phytopathogenic fungi were estimated. The results showed significant reduction of seed infection by Alternaria spp. The presented results indicate possible application of this isolate as promising biological agent for control of marshmallow seed pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document