scholarly journals Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients

2014 ◽  
Vol 60 (No. 4) ◽  
pp. 151-157 ◽  
Author(s):  
M. Kulhánek ◽  
J. Balík ◽  
J. Černý ◽  
F. Vašák ◽  
Š. Shejbalová

The aim of this work is to evaluate the changes of Mehlich 3 – P, K, Ca and Mg contents in soil during a long-term field experiments with sewage sludge, farmyard manure (FYM) and mineral NPK (NPK) application, compared to the control non-fertilized treatment. The experiment was established at the Humpolec and Suchdol sites (Czech Republic). Potatoes, wheat and barley were grown in crop rotation. Fertilizing system was based on the same nitrogen dose of 330 kg N/ha per one crop rotation. Archive soil samples from the beginning of the experiment (1996) and from the end of each year’s crop rotation (1999, 2002, 2005, 2008 and 2011) were analyzed. In spite of the different soil-climatic conditions of the studied sites, very similar tendencies of P, K, Ca and Mg contents changes after the fertilizing systems used were observed in the soil. In case of the same nitrogen dose (330 kg N/ha), sewage sludge appeared to be better source of bioavailable soil phosphorus compared to the farmyard manure and NPK. On the contrary, FYM was a better source of bioavailable potassium and magnesium, despite the lower total magnesium content in FYM. The NPK treatment was the best long-term source of bioavailable potassium.

2020 ◽  
Vol 15 (No. 4) ◽  
pp. 211-219
Author(s):  
Jiří Balík ◽  
Martin Kulhánek ◽  
Jindřich Černý ◽  
Ondřej Sedlář ◽  
Pavel Suran

Experiments were used to determine the potassium release from the non-exchangeable K (Kne) forms that are involved in plant nutrition and which replenish the pool of available K. Long-term stationary field experiments with different fertilisation systems (organic: farmyard manure, sewage sludge, straw; mineral: NPK, N) were carried out to study the potassium balance and the K content changes in the topsoil (0–30 cm) and subsoil (30–60 cm). The trials were located at three sites with different soil-climatic conditions. The following crops were rotated within the trial: potatoes (maize) – winter wheat – spring barley. All three crops were grown each year over 21 years. Positive correlations between the contents of the available K in the topsoil and the potassium balance (K inputs – K outputs) were observed. There were no statistically significant differences among the treatments. Depending on the soil properties, the ratio of non-exchangeable K (Kne) was 12–37% of the values obtained via the aqua regia extraction. Depending on the site, the amount released from the Kne forms to the available K form was 46–69 kg K/ha/ year. The use of K from the farmyard manure varied from 7.4% up to 25%. Due to the low K content in the sewage sludge, the long-term fertilisation with sludge may only lead to the depletion of the available K in the soil, similar to the sole N mineral fertilisation.


2018 ◽  
Vol 64 (No. 12) ◽  
pp. 578-586 ◽  
Author(s):  
Jiří Balík ◽  
Jindřich Černý ◽  
Martin Kulhánek ◽  
Ondřej Sedlář

Soil carbon transformation was observed in long-term stationary field experiments (longer than 20 years) at two sites with different soil-climatic conditions (Luvisol, Chernozem). The following crops were rotated within the trial: row crops (potatoes or maize)-winter wheat-spring barley. All three crops were grown each year. Four different fertilization treatments were used: (a) no fertilizer (control); (b) sewage sludge (9.383 t dry matter/ha/3 years); (c) farmyard manure (15.818 t dry matter/ha/3 years); (d) mineral NPK fertilization (330 kg N, 90 kg P, 300 kg K/ha/3 years). At the Luvisol site, the control treatment showed a tendency to decrease organic carbon (C<sub>org</sub>) in topsoil. At organic fertilization treatments the content of C<sub>org</sub> increased: sewage sludge – +15.0% (Luvisol) and +21.8% (Chernozem), farmyard manure – +19.0% (Luvisol) and +15.9% (Chernozem). At the NPK fertilization, the increase was +4.8% (Luvisol) and +4.7% (Chernozem). The increased C<sub>org</sub> content was also associated with an increase of microbial biomass carbon (C<sub>mic</sub>) and extractable organic carbon (0.01 mol/L CaCl<sub>2</sub> and hot water extraction). The ratio of C<sub>mic</sub> in C<sub>org</sub> was within the range 0.93–1.37%.


2019 ◽  
Vol 65 (No. 5) ◽  
pp. 225-232 ◽  
Author(s):  
Jiří Balík ◽  
Jindřich Černý ◽  
Martin Kulhánek ◽  
Ondřej Sedlář ◽  
Pavel Suran

Balance of potassium (K) was observed in long-term stationary field experiments (21 years) at two sites with different soil and climatic conditions (Luvisol, Cambisol). The following crops were rotated within the trial: potatoes- winter wheat-spring barley. All three crops were grown each year. The trial comprised 6 treatments: (1) no fertilization; (2) farmyard manure; (3) half dose of farmyard manure + nitrogen (N) in mineral nitrogen fertilizers; (4) mineral nitrogen fertilizers; (5) NPK in mineral fertilizers; (6) straw of spring barley + N in mineral nitrogen fertilizers. The recovery rate of potassium from farmyard manure by crops was 24–26%, from mineral fertilizers it was 27–52%. Different fertilization intensities were manifested by significant differences in the content of exchangeable K in soil. Changes in non-exchangeable K (K<sub>ne</sub>) were recorded only at the Luvisol site (850 mg K<sub>ne</sub>/kg), but not at the Cambisol site (3000 mg K<sub>ne</sub>/kg). The maximum negative balance (–2376 kg K/ha/21 years) was recorded at the mineral nitrogen fertilization treatment.


1992 ◽  
Vol 72 (4) ◽  
pp. 581-589 ◽  
Author(s):  
R. H. McKenzie ◽  
J. W. B. Stewart ◽  
J. F. Dormaar ◽  
G. B. Schaalje

The effects of different cropping systems, fertilizer, and lime on soil phosphorus (P) dynamics in soils developed under forest vegetation have received little attention. The objective of this study was to develop an understanding of P fractions and transformations in long-term rotation plots on a Luvisolic soil at Breton, Alberta. Results have shown that crop rotation and fertilizer application have affected more inorganic soil phosphorus (Pi) and organic phosphorus (Po) fractions, as determined by a sequential extraction procedure. Continuously cropped treatments, which had not received fertilizer, resulted in P drawdown of resin-extractable Pi (resin-Pi), sodium bicarbonate-extractable Pi (bicarb-Pi), sodium hydroxide-extractable Pi (NaOH-Pi), sodium bicarbonate-extractable Po (bicarb-Po), sodium hydroxide-extractable Po (NaOH-Po) and hydrochloric acid-extractable Pi (HCl-Pi) fractions. Only the residual-P fraction (insoluble Pi and stable Po forms) was unaffected. Addition of fertilizer had an effect on all P fractions except the NaOH-Po fraction. Phosphorus fertilizer treatments positively affected the Pi fractions and N fertilizer positively affected the bicarb-Po fraction. Lime application affected soil pH, which lowered NaOH-Pi levels and increased HCl-Pi levels through formation of more stable calcium phosphate compounds. Addition of lime also resulted in lower bicarb-Po levels. Cropping without using phosphate fertilizer has resulted in a 30–40% decline in total-P in the Breton plots in the Ap horizon. Continuous cropping, with a forage crop in the rotation, coupled with modest N and P fertilizer application, had the most positive effects on P cycling and transformations. Summerfallow had no apparent beneficial effects on P transformations. Key words: Soil P transformations, Luvisolic soil, P bioavailability, sequential extraction


2001 ◽  
pp. 34-39
Author(s):  
János Lazányi

The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 344-352 ◽  
Author(s):  
J. Balík ◽  
M. Kulhánek ◽  
J. Černý ◽  
J. Száková ◽  
D. Pavlíková ◽  
...  

The aim of this work was to estimate the changes in contents of different sulfur (S) fractions in soils under conditions of lowering inputs of S from emissions together with the influence of application of manure and mineral fertilizers. Soil samples from long-term field experiments were used for this purpose. The samples were taken from 10 sites from precise long-term field experiments with different soil-climatic conditions in the Czech Republic. The samples were analyzed using the following fractionation: (i) water soluble S (H<sub>2</sub>O extracts), (ii) sorbed S (0.032M NaH<sub>2</sub>PO<sub>4</sub> extracts) and (iii) S occluded with carbonates (1M HCl extract). Furthermore, the concentration of total S (S<sub>tot</sub>) and organic S (S<sub>org</sub>) was determined. Soil samples were taken in the years 1981 and 2007. During 26 years a decrease of S<sub>tot</sub> by about 3–8%, water soluble S by 65–68% and sorbed S by 39–44% were observed in the topsoil of the evaluated soils. Furthermore, a low increase in the content of organic S was observed. The estimated ratio of S<sub>org</sub> reached 78.7–80.9% from S<sub>tot</sub> in the year 1981 and 87.7–89.8% in 2007. Farmyard manure (40 t/ha) applied every 4 years did not have a significant influence on S fractions and S<sub>tot</sub> contents in soils; intensive S fertilizing increased S<sub>tot</sub> and mobile S forms contents in soils. Very close correlations were obtained especially between S<sub>tot</sub> and water soluble S and organic S.


1999 ◽  
Vol 30 (1-2) ◽  
pp. 100-106 ◽  
Author(s):  
A. Saviozzi ◽  
A. Biasci ◽  
R. Riffaldi ◽  
R. Levi-Minzi

2020 ◽  
Vol 17 ◽  
pp. 00119
Author(s):  
Boris Boincean ◽  
David Dent

The reductionist approach to intensification of agriculture has created unanticipated economic, ecological and social consequences. Across the steppes, elimination of perennial legumes from the crop rotation and even elimination of crop rotation, large areas under black fallow, and the demise of crop and animal husbandry are draining soil fertility – and in many places loss of the soil itself. Data from long-term field experiments demonstrate the importance of perennial legumes in crop rotation for nitrogen- and water-use efficiency, accumulation of soil organic matter in deeper soil layers, and resilience in the face of drought.


2008 ◽  
Vol 53 (No. 9) ◽  
pp. 375-381 ◽  
Author(s):  
J. Balík ◽  
D. Pavlíková ◽  
V. Vaněk ◽  
M. Kulhánek ◽  
B. Kotková

Model experiments using rhizoboxes were carried out in order to evaluate the influence of different plants (wheat, rape) on the changes in water extractable contents of P, the pH/H2O value and the activity of acidic and alkaline phosphatase in soil of plant rhizosphere. For this experiment, a Cambisol with different long-term fertilizing systems was used: (i) control (with no fertilizer application), (ii) sewage sludge, and (iii) manure. A lower content of water-soluble P was observed in close vicinities of root surfaces (up to 2 mm) at all the studied variants. The control (non-treated) variant reflected a significantly lower content of water-soluble P in the rhizosphere compared to the fertilized ones. The activities of the acidic and alkaline phosphatases were significantly higher in the rhizosphere compared to the bulk soil (soil outside the rhizosphere). The long-term application of organic fertilizers significantly increased phosphatase activity; the activity of the acidic phosphatase was significantly higher in the rhizosphere of rape plants compared to wheat. The variant treated with manure exhibited an increased activity of both the acidic and alkaline phosphatases compared to the variant treated with sewage sludge. In the case of the variant treated long-term with sewage sludge, the portion of inorganic P to total soil P content proportionally increased compared to the manure-treated variant. Soil of the rape rhizosphere showed a trend of lower pH/H<sub>2</sub>O value of all variants, whereas the wheat rhizosphere showed an opposite pH tendency.


Sign in / Sign up

Export Citation Format

Share Document