A multi-scale stiffness fractal model of joint interfaces

Author(s):  
Jingfang Shen ◽  
◽  
Sijie Cheng ◽  
Siyan Wang ◽  
Wenwei Liu ◽  
...  

Stiffness characterization of mechanical interfaces is quite crucial for the analysis of several tribological behaviors. The stiffness of different machine tools varies greatly, particularly for computer numerical control machine. Therefore, this research aims at providing an assessment of influence factors for stiffness of joint interfaces theoretically. Based on fractal roughness parameters independent of scale and contact mechanics theory, the contact area of joint interface is studied, and the multi-scale normal contact stiffness model and multi-scale tangential contact stiffness model are proposed. Meanwhile, the problem of the deformation of any contact asperity is considered as three separate regimes. The laws of area-displacement and force-displacement under elastic-plastic regime are established. The transition which is in the deformation mechanism of asperity from elastic to plastic is consistent with classical contact mechanics. The analysis of numerical calculation results indicates the approximate linear relation among dimensionless normal load and key parameters. Moreover, these key parameters have been divided into two main categories for the multiscale model of joint interfaces, one is fractal parameters such as fractal dimension D and fractal roughness parameter G, and the other is interfacial parameters. In addition, tangential load and friction factor are two important factors to the tangential stiffness.

2019 ◽  
Vol 72 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Hongxu Chen ◽  
Qin Yin ◽  
Guanhua Dong ◽  
Luofeng Xie ◽  
Guofu Yin

Purpose The purpose of this paper is to establish a stiffness model of fixed joint considering self-affinity and elastoplasticity of asperities. Design/methodology/approach The proposed model considers that asperities of different scales are interrelated rather than independent. For elastoplastic contact, a spring-damper model and an elastic deformation ratio function were proposed to calculate the contact stiffness of asperities. Findings A revised fractal asperity model was proposed to calculate the contact stiffness of fixed joint, the impacts of the fractal dimension, the fractal roughness parameter and the Meyer index on the contact stiffness were discussed, and the present experimental results and the Jiang’s experimental results showed that the stiffness can be well predicted by proposed model. Originality/value The contradiction between the Majumdar and Bhushan model and the Morag and Etsion model can be well explained by considering the interaction among asperities of different scales. For elastoplastic contact, elastic deformation ratio should be considered, and the stiffness of asperities increases first and then decreases with the increasing of interference.


Author(s):  
K. S. Parel ◽  
R. J. Paynter ◽  
D. Nowell

Measurements with digital image correlation of normal and tangential contact stiffness for ground Ti-6Al-4V interfaces suggest a linear relationship between normal contact stiffness and normal load and a linear relationship between tangential contact stiffness and tangential load. The normal contact stiffness is observed approximately to be inversely proportional to an equivalent surface roughness parameter, defined for two surfaces in contact. The ratio of the tangential contact stiffness to the normal contact stiffness at the start of tangential loading is seen to be given approximately by the Mindlin ratio. A simple empirical model is proposed to estimate both the normal and tangential contact stiffness at different loads for a ground Ti-6Al-4V interface, on the basis of the equivalent surface roughness and the coefficient of friction.


2019 ◽  
Vol 72 (3) ◽  
pp. 379-388
Author(s):  
Hongping Yang ◽  
Xiaowei Che ◽  
Cheng Yang

Purpose This paper aims to propose a normal and tangential contact stiffness model to investigate the contact characteristics between rough surfaces of machined joints based on fractal geometry and contact mechanics theory considering surface asperities interaction. Design/methodology/approach The fractal geometry theory describes surface topography and Hertz contact theory derives the asperities elastic, elastic-plastic and plastic contact deformation. The joint normal and tangential contact stiffness are obtained. The experiment method for normal and tangential contact stiffness are introduced. Findings The relationship between dimensionless normal contact load and dimensionless normal and tangential contact stiffness are analyzed in different plasticity index. The results show that they are nonlinear relationships. The normal and tangential contact stiffness are obtained based on theoretical and experimental methods for milling and grinding machined specimens. The results indicate that the present model for the normal and tangential contact stiffness are consistent with experimental data, respectively. Originality/value The normal and tangential contact stiffness models are constructed by using the fractal geometry and the contact mechanics theory considering surface asperities interaction, which includes fully elastic, elastic-plastic and fully plastic contacts deformation. The present method can generate a more reliable calculation result as compared with the contact model no-considering asperities interaction.


Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050081
Author(s):  
CHUNLING WEI ◽  
HUA ZHU ◽  
SHIHUI LANG

This paper presents a modified complete normal contact stiffness model of a fractal surface considering contact friction. We use this model to study the influence of fractal dimensions and fractal roughness on normal contact stiffness. The fractal micro-contact model of an asperity and the complete length scale contact model of fractal surface (both contrasting classical mechanics) are revised. The influence of frictional resistance at micro-contact interfaces on normal contact stiffness is also considered. Predictions of the new model are found to be in greater agreement with the results of the experiments than the predictions of the original model. The study analyzes the influence of fractal dimensions and fractal roughness on the normal contact stiffness. With the increase of these two fractal parameters, their influences on the normal contact stiffness are opposite and are different under high pressure and low pressure.


2011 ◽  
Vol 328-330 ◽  
pp. 336-345
Author(s):  
Guo Sheng Lan ◽  
Xue Liang Zhang ◽  
Hong Qin Ding ◽  
Shu Hua Wen ◽  
Zhong Yang Zhang

Through the analysis and research on three fractal models of normal contact stiffness of joint interfaces, the differences between them can be found. Furthermore, numerical simulation was carried out to obtain the complicated nonlinear relations between normal contact stiffness and the normal load. The results show that the normal contact stiffness increases with the normal load, decreases with G but complicatedly varies with D. According to different fractal dimension, we can chose an appropriate one among the three fractal models of normal contact stiffness of joint interfaces when describing normal contact stiffness of joint interfaces.


Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
He Ling ◽  
Wei Fan ◽  
...  

Considering the rough surface as a fractal model makes the research of contact parameters more practical. In the fractal model of the machined surface, the parameters describing the surface topography are independent of the measurement resolution. Based on the elastic, elasto-plastic and plastic deformations of a single pair of contact asperities, a normal contact stiffness model using the fractal model for surface topography description is proposed in this paper. The specimens machined by milling and grinding methods are used to verify the proposed contact stiffness model based on the fractal theory. The experimental and theoretical results indicate that the proposed contact stiffness model is appropriate for the machined joint surfaces.


Author(s):  
Christian M. Firrone ◽  
Marco Allara ◽  
Muzio M. Gola

Dry friction damping produced by sliding surfaces is commonly used to reduce vibration amplitude of blade arrays in turbo-machinery. The dynamic behavior of turbine components is significantly affected by the forces acting at their contact interfaces. In order to perform accurate dynamic analysis of these components, contact models must be included in the numerical solvers. This paper presents a novel approach to compute the contact stiffness of cylindrical contacts, analytical and based on the continuous contact mechanics. This is done in order to overcome the known difficulties in simultaneously adjusting the values of both tangential and normal contact stiffness experimentally. Monotonic loading curves and hysteresis cycles of contact forces vs. relative displacement are evaluated as a function of the main contact parameters (i.e. the contact geometry, the material properties and the contact normal load). The new contact model is compared with other contact models already presented in literature in order to show advantages and limitations. The contact model is integrated in a numerical solver, based on the Harmonic Balance Method (HBM), for the calculation of the forced response of turbine components with friction contacts, in particular underplatform dampers. Results from the nonlinear numerical simulations are compared with those from validation experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Roman Pohrt ◽  
Valentin L. Popov

We investigate the normal contact stiffness in a contact of a rough sphere with an elastic half-space using 3D boundary element calculations. For small normal forces, it is found that the stiffness behaves according to the law of Pohrt/Popov for nominally flat self-affine surfaces, while for higher normal forces, there is a transition to Hertzian behavior. A new analytical model is derived describing the contact behavior at any force.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1830
Author(s):  
Yu Tian ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

Recycled rubber in granulated form is a promising geosynthetic material to be used in geotechnical/geo-environmental engineering and infrastructure projects, and it is typically mixed with natural soils/aggregates. However, the complex interactions of grains between geological materials (considered as rigid bodies) and granulated rubber (considered as soft bodies) have not been investigated systematically. These interactions are expected to have a significant influence on the bulk strength, deformation characteristics, and stiffness of binary materials. In the present study, micromechanical-based experiments are performed applying cyclic loading tests investigating the normal contact behavior of rigid–soft interfaces. Three different geological materials were used as “rigid” grains, which have different origins and surface textures. Granulated rubber was used as a “soft” grain simulant; this material has viscoelastic behavior and consists of waste automobile tires. Ten cycles of loading–unloading were applied without and with preloading (i.e., applying a greater normal load in the first cycle compared with the consecutive cycles). The data analysis showed that the composite sand–rubber interfaces had significantly reduced plastic displacements, and their behavior was more homogenized compared with that of the pure sand grain contacts. For pure sand grain contacts, their behavior was heavily dependent on the surface roughness and the presence of natural coating, leading, especially for weathered grains, to very high plastic energy fractions and significant plastic displacements. The behavior of the rigid–soft interfaces was dominated by the rubber grain, and the results showed significant differences in terms of elastic and plastic fractions of displacement and dissipated energy compared with those of rigid interfaces. Additional analysis was performed quantifying the normal contact stiffness, and the Hertz model was implemented in some of the rigid and rigid–soft interfaces.


Sign in / Sign up

Export Citation Format

Share Document