The Disposal of Activated Carbon from Chemical Agent Disposal Facilities

2009 ◽  
2013 ◽  
Vol 750-752 ◽  
pp. 1457-1460
Author(s):  
Xiao Jie Wang ◽  
Hong Wei Zhang ◽  
En Feng Chen ◽  
Yun Zhe Ji

t developed test devices and carried out test adopting combined process ofclarification-adsorption-membrane separationtargeted at surface water which was polluted by chemical agent VX. Investigation on purification effects of sand filtration, microfiltration, ultrafiltration, activated carbon adsorption and reverse osmosis was implemented in sections. It also researched on working principles of each section. Furthermore, comparative study has been made for adsorption performance of coaly granular activated carbon and that of shell activated carbon. The results show that the combined process can remove effectively simulation agent in water and the outlet quality complies with requirements of relevant standards.


2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


2018 ◽  
Vol 3 (11) ◽  
pp. 6-11 ◽  
Author(s):  
Funda Ateş ◽  
Öznur Özcan

Activated carbons were prepared from poplar sawdust by chemical activation using ZnCl2, H3PO4 or KOH. The influence of activating agents, carbonization temperatures ranging from 500 ºC to 800 ºC, and mass ratio of chemical agent to precursor (1:1 and 2:1) on the porosity of activated carbons were studied. The properties of the carbons were characterized by adsorption/desorption of nitrogen to determine the BET areas, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). It was determined that the surface morphology and textural characteristics of activated carbons vary depending on the carbonization temperature or chemical agent. Maximum surface areas were obtained at carbonization temperatures of 500, 700 and 800 ºC for H3PO4, KOH and ZnCl2 activation, respectively. The activated carbons prepared using ZnCl2 and H3PO4 activation had a higher BET surface area (nearly 1100 m2/g) than that of the KOH activation (761 m2/g). This study also presents a comparison of mechanisms of activating agents and carbonization temperature. As a result of the experimental studies, positive results were obtained, and the production of activated carbon with a high surface area was conducted. 


2018 ◽  
Vol 6 (3) ◽  
pp. 100-103
Author(s):  
Alarqam Z. Tareq ◽  
Mohammed S. Hussein ◽  
Pyman A. Abdujabar

In his study activated carbon was prepared from Helhelok stones as a raw material by using chemical activation with zinc chloride (ZnCl2) as a chemical agent with the concentration 40% for 25h at (25⁰C±2). The optimum conditions were approved in having carbonization temperature 400ᵒC for 1h to get a maximum percentage of yield 56%. Other properties of the prepared activated carbon were also studied such as pH, ash content, density, moisture content, conductivity, iodine number and methylene blue dye absorbance. Eventually the prepared activated carbon in this work has obtained good characteristics that make it play an essential role in industrial uses and compared it with commercial standard sample from B. D. H Company.


Author(s):  
Nur Aini Rahma ◽  
Asih Kurniasari ◽  
Yoyok Dwi Setyo Pambudi ◽  
His Muhammad Bintang ◽  
Anne Zulfia ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1000
Author(s):  
Ji-Hyun Kim ◽  
Gibbum Lee ◽  
Jung-Eun Park ◽  
Seok-Hwi Kim

The chemical activation of a carbon precursor with KOH generally results in an activated carbon (AC) with a high specific surface area. However, this process generates a large volume of wastewater that includes dissolved alkali metals, existing mainly as K2CO3. Thus, wastewaters with a high concentration of dissolved K2CO3 can potentially be used in place of KOH as a chemical agent. In the present study, to reduce the thermal stability of K2CO3, which decomposes at temperatures greater than 891 °C, K2CO3 was chemically impregnated into carbon precursors prior to activation of the precursors. The thermochemical properties and activation efficiency of the carbon precursors treated with K2CO3 were compared with those of carbon precursors treated with KOH. Analysis by XPS indicated that C–O–K complexes formed on the surface of the carbon precursors; in addition, their peak intensities were approximately the same irrespective of the chemical agent used. However, the specific surface area of the K2CO3-impregnated AC was 2162 m2/g, which was ~70% of that of the KOH-impregnated AC (3047 m2/g) prepared using the same K/C molar ratio of 0.5. XRD results confirmed that both K2CO3 and KOH transformed into KHCO3 and K4H2(CO3)3·1.5H2O during the impregnation. The peak intensities of these compounds in the XRD pattern of the K2CO3-impregnated carbon precursors were two times greater than those in the pattern of the KOH-impregnated carbon precursors. These compounds eventually transformed into K2CO3, which hardly participated as a chemical agent at the temperature used in the present study (850 °C). Therefore, recrystallisation of K2CO3, even during the impregnation, appeared to adversely affect the degree of activation. Nevertheless, the specific surface area of the K2CO3-activated AC was still ~1.6 times greater than that of the untreated carbon precursor (1378 m2/g), suggesting that the use of wastewater as a chemical agent is feasible for resource recycling.


Seed coat macadamia preparation of activated carbon with chemical agent K2CO3 from macadamia shells as per ratio: K2CO3: distilled water = 1:1:10ml, optimal temperature condition 6500C and burning time 60 minutes. Efficiency removal of zinc (II) in wastewater efficiency (53.42%) with the concentration of 25ppm, conducted a survey at pH = 4.5 with 1.8g/l of carbon, treated in 100 minutes. Survey results have similarities with other studies and are applicable to application removal of zinc (II) in wastewater.


The study aims to investigate the possibility of processing copper metal (Cu2+) with activated carbon prepared from macadamia shell. Activated carbon is prepared from Macadamia shell by chemical agent H3PO4 with coke ratio: H3PO4 = 1:1, optimal temperature condition is 5000C and burning time is 60 minutes. Using the assumed Cu2+ metal treats materials in the laboratory with a concentration of 30ppm. The research to result ability material adsorbed Cu2+ metal achieve good performance 95.92% handle, corresponding to the concentration of Cu2+ reduced from 30 mg/l to 1.2mg/l in optimal conditions is pH = 4.5 , dosage 1.8g/l, time 30 minutes. The results showed that activated carbon prepared from macadamia husk with chemical agent H3PO4 was capable of treating copper metal in wastewater.


Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


2020 ◽  
Author(s):  
Feng Xiao ◽  
Bin Yao ◽  
Pavankumar Challa Sasi ◽  
Svetlana Golovko ◽  
Dana Soli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document