Guidelines on the Use of Auxiliary Through Lanes at Signalized Intersections

2012 ◽  
Author(s):  
Nagui Rouphail ◽  
Brandon Nevers ◽  
Jim Bonneson ◽  
Bastian Schroeder ◽  
Hermanus Steyn ◽  
...  
1997 ◽  
Vol 1572 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Jamie W. Hurley

The capacity of multiple through lanes at signalized intersections depends on the distribution of traffic within these lanes, with equal lane distribution corresponding to maximum capacity. However, traffic characteristics, land use, and geometric factors usually prohibit this from occurring. Although the 1994 update of the Highway Capacity Manual considers the case of continuous through lanes at signalized intersections, the default values provided do not address situations in which lane reduction takes place downstream of the intersection. Lane distribution data obtained in the field can remedy the situation but for existing conditions only. This research employed the concept of captive and choice lane users in modeling lane use for intersection configurations with a single continuous through lane and an “auxiliary” through lane, which is continuous upstream of the intersection but is dropped downstream of it. Stepwise multiple regression was performed on data collected at sites in Tennessee to ascertain those factors significantly affecting auxiliary lane use. These factors were found to be ( a) right turns off the facility at the intersection, ( b) total left turns off the facility downstream of the intersection, ( c) right turns onto the facility in the first 122 m (400 ft) upstream of the intersection, ( d) right turns off the facility in the last 152 m (500 ft) of the auxiliary lane, ( e) downstream auxiliary lane length, and ( f) the existence of left-turn bays or two-way continuous left-turn lanes downstream of the intersection. For the configuration studied, lane distribution data often differed considerably from the default values given in the Highway Capacity Manual.


Author(s):  
Mohammed S. Tarawneh

To increase the capacity of through traffic at signalized intersections, additional lanes with limited length—called auxiliary lanes—are added to the roadway at the intersection. Because of their limited length, as well as other factors, these lanes are not as fully utilized as other continuous through lanes. Research was undertaken with two objectives: ( a) to observe and identify the level of use of auxiliary through lanes added at intersections of four-lane, two-way roadways; and ( b) to study the effects of auxiliary lane length, right-turn volume, and through/right-turn lane group delay on the level of their use. Lane-use data collected during 1,050 saturated cycles at eight signalized intersections with different auxiliary lane lengths were used to accomplish research objectives. All factors investigated—auxiliary lane length, right-turn volume, and stopped-delay—were found to contribute significantly to the use of auxiliary lanes at 0.01 level. The level of each factor’s contribution, however, was dependent on the level of the other two. Lane use of nearly one to seven straight-through vehicles per cycle, depending on levels of factors investigated, was observed at the study locations. Longer auxiliary lanes, lower right-turn volumes, and excessive approach delays encouraged the use of auxiliary lanes by straight-through vehicles. The range of lane utilization adjustment factors ( fLU-factors) calculated from field data was 0.73 to 0.82, which is lower than the 1997 Highway Capacity Manual default value of 0.91 for a three-lane through/right-turn group.


2019 ◽  
Vol 11 (4) ◽  
pp. 168781401984183 ◽  
Author(s):  
Zhuping Zhou ◽  
Sixian Liu ◽  
Wenxin Xu ◽  
Ziyuan Pu ◽  
Shuichao Zhang ◽  
...  

Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


2020 ◽  
Vol 11 (1) ◽  
pp. 216-226
Author(s):  
Bara’ W. Al-Mistarehi ◽  
Ahmad H. Alomari ◽  
Mohamad S. Al Zoubi

AbstractThis study aimed to investigate a potential list of variables that may have an impact on the saturation flow rate (SFR) associated with different turning movements at signalized intersections in Jordan. Direct visits to locations were conducted, and a video camera was used. Highway capacity manual standard procedure was followed to collect the necessary traffic data. Multiple linear regression was performed to classify the factors that impact the SFR and to find the optimal model to foretell the SFR. Results showed that turning radius, presence of camera enforcement, and the speed limit are the significant factors that influence SFR for shared left- and U-turning movements (LUTM) with R2 = 76.9%. Furthermore, the presence of camera enforcement, number of lanes, speed limit, city, traffic volume, and area type are the factors that impact SFR for through movements only (THMO) with R2 = 69.6%. Also, it was found that the SFR for LUTM is 1611 vehicles per hour per lane (VPHPL),which is less than the SFR for THMO that equals to 1840 VPHPL. Calibration and validation of SFR based on local conditions can improve the efficiency of infrastructure operation and planning activities because vehicles’ characteristics and drivers’ behavior change over time.


Sign in / Sign up

Export Citation Format

Share Document