Investigation of saturation flow rate using video camera at signalized intersections in Jordan

2020 ◽  
Vol 11 (1) ◽  
pp. 216-226
Author(s):  
Bara’ W. Al-Mistarehi ◽  
Ahmad H. Alomari ◽  
Mohamad S. Al Zoubi

AbstractThis study aimed to investigate a potential list of variables that may have an impact on the saturation flow rate (SFR) associated with different turning movements at signalized intersections in Jordan. Direct visits to locations were conducted, and a video camera was used. Highway capacity manual standard procedure was followed to collect the necessary traffic data. Multiple linear regression was performed to classify the factors that impact the SFR and to find the optimal model to foretell the SFR. Results showed that turning radius, presence of camera enforcement, and the speed limit are the significant factors that influence SFR for shared left- and U-turning movements (LUTM) with R2 = 76.9%. Furthermore, the presence of camera enforcement, number of lanes, speed limit, city, traffic volume, and area type are the factors that impact SFR for through movements only (THMO) with R2 = 69.6%. Also, it was found that the SFR for LUTM is 1611 vehicles per hour per lane (VPHPL),which is less than the SFR for THMO that equals to 1840 VPHPL. Calibration and validation of SFR based on local conditions can improve the efficiency of infrastructure operation and planning activities because vehicles’ characteristics and drivers’ behavior change over time.

2003 ◽  
Vol 1852 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Winai Raksuntorn ◽  
Sarosh I. Khan

A review of the literature shows that capacity and saturation flow rate for on-street bicycle lanes at intersections have not been measured on the basis of bicycle discharge at intersections at the start of the green phase. The Highway Capacity Manual 2000 recommends a saturation flow rate of 2,000 bicycles per hour for a bicycle lane at a signalized intersection. However, this recommendation is not based on field studies at the intersection and is not a function of the width of the bicycle lane. A revised estimate is provided of saturation flow rate, and an estimate is provided of start-up lost time for bicycles based on data collected at the stop line of signalized intersections. In addition, the lateral stopped distance of automobiles from bicycle lanes, the lateral stopped distance of bicycles from adjacent lanes, and the lateral and longitudinal stopped distance between pairs of bicycles at a signalized intersections are presented. Bicycles may form more than one queue within a bicycle lane at the stop line. Since bicycles maintain a certain distance from the adjacent lane and the curb, the number of queues formed varies based on the width of the bicycle lane. Therefore, the saturation flow rate for a bicycle lane depends on the number of queues or the width of the bicycle lane. The saturation flow rates for bicycle lanes of varying widths are proposed on the basis of the lateral stopped distance of bicycles. Empirical evidence from intersections in Colorado and California is used to propose a new method to estimate the capacity for a bicycle lane.


2020 ◽  
Vol 12 (11) ◽  
pp. 4485
Author(s):  
Abdelrahman Abuhijleh ◽  
Charitha Dias ◽  
Wael Alhajyaseen ◽  
Deepti Muley

The Saturation Flow Rate (SFR) is a primary measure that can be used when estimating intersection capacity. Further, the efficiency of signal control parameters also depends on the accuracy of assumed SFR values. Driver behavior, type of movement, vehicle type, intersection layout, and other factors may have a significant impact on the saturation flow rate. Thus, it is expected that driving environments that have heterogeneous driver populations with different driving habits and cultures may have different SFRs. In practice, the proposed SFRs based on US standards (Highway Capacity Manual, 2016) have been adopted in the State of Qatar without validation or calibration to consider the local road environment and the characteristics of the driving population. This study aims to empirically analyze the saturation flow rates for exclusive left-turn lanes and shared left- and U-turn lanes at two signalized intersections in Doha city, while considering the effects of heavy vehicles and U-turn maneuvers. Empirical observations revealed that the average base SFR, i.e., when the influences from heavy vehicles and U-turns were excluded, could vary approximately from 1800 vehicles per hour per lane (vphpl) to 2100 vphpl for exclusive left-turning lanes and approximately from 1800 vphpl to 1900 vphpl for shared left- and U-turning lanes. Furthermore, this study proposed different adjustment factors for heavy vehicle and U-turn percentages which can be applied in practice in designing signalized intersections, particularly in the State of Qatar.


Author(s):  
G. A. Glannopoulos ◽  
Muhammad A. S. Mustafa

The operation of shared lanes, especially in the case of permitted phasing control, is still considered a complicated task and one for which many procedures and methods have been introduced. Dealt with here is the complexity when left- or right-turn movements or both are made during the unsaturated part of the opposing traffic flow. Three main methods used for estimating the shared lane's saturation flow rate and capacity values—that used in the 1985 Highway Capacity Manual (HCM) and the Australian Road Research Board (ARRB) and the Canadian methods—were analyzed and evaluated. The methodology for the comparative evaluation was based on two main approaches. In the first approach, example 1 of Chapter 9 of the HCM was used as a case study in which left through and left through right shared lanes exist in permitted phase control. In this case several computer runs were performed using the programs SIDRA and SINTRAL to estimate saturation flow and capacity values of the shared lanes opposed by different traffic volumes of the conflicting movements. Results of this approach showed that the 1985 HCM and ARRB methods are fairly close in estimating saturation flow and capacity, whereas the Canadian method gave considerably different results. Analysis showed that the sensitivity of the Canadian method to estimate saturation flow rates of the shared lane in cases of different levels of opposing traffic was an average of 10 times higher than the average of the two other methods, which were very close in their estimation of levels of opposing traffic volumes. In the second approach, field measurements of saturation flow rate values of shared lanes at different locations and operational conditions were compared with the values estimated by the three methods under the same conditions. Results, based on field observations, revealed that the Canadian method estimates of saturation flow were always lower than the measured values. At low saturation flow values, HCM estimates were slightly higher than the observed values; however, at higher saturation flow rate values. HCM estimates closely matched the observed ones. The ARRB method estimates were quite close to the observed saturation flow values under all of the different conditions considered in the field observation task.


2021 ◽  
Vol 20 (6) ◽  
pp. 506-513
Author(s):  
A. V. Zedgenizov ◽  
D. V. Kapskiy ◽  
R. Yu. Lagerev

The paper discusses problems of assessing the impact of mass attraction centers on the adjacent street and road network in the process of their functioning, expansion or conversion. The choice of criteria for assessing the organization of traffic flow, given in the Russian and foreign literature, has been substantiated, in particular, it is proposed to use v/c ratio for adjacent junction and corresponding level of traffic service (LOS). The main models for estimating capacity of signalized intersections are presented. The procedures of forming a mathematical model for estimating the load factor of signalized intersections is shown. The concepts of lane group capacity, total lost time per cycle, phase coefficients, saturation flow rate, and coefficients taking into account the decrease in the ideal saturation flow rate are explained. A mathematical model for estimating transport demand is presented, which allows to calculate the intensity of traffic flow to and from the center of mass attraction on the basis of the total traffic flow of correspondence, share of visitors in individual transport, average filling of individual transport, and coefficient of daily irregularity upon arrival and departure of visitors on an individual transport. An integrated mathematical model of loaf factor is proposed which includes parameters for estimating transport demand for centers of mass embarrassment and parameters that determine the signalized intersections capacity. The uniqueness of the integrated model is that it simultaneously involves parameters reflecting the demand and capacity of loading intersection. Recommendations are made on assessing the level of traffic service flows and the v/s ratio, based on the data of transport demand and capacity, adjacent to the centers of mass attraction of the road network. The presented method of estimating the LOS based on the capacity of the signalized intersections allows us to estimate the influence degree of mass attraction centers on the adjacent urban road network.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zhengtao Qin ◽  
Jing Zhao ◽  
Shidong Liang ◽  
Jiao Yao

Many intersections around the world are irregular crossings where the approach and exit lanes are offset or the two roads cross at oblique angles. These irregular intersections often confuse drivers and greatly affect operational efficiency. Although guideline markings are recommended in many design manuals and codes on traffic signs and markings to address these problems, the effectiveness and application conditions are ambiguous. The research goal was to analyze the impact of guideline markings on the saturation flow rate at signalized intersections. An adjustment estimation model was established based on field data collected at 33 intersections in Shanghai, China. The proposed model was validated using a before–after case study. The underlying reasons for the impact of intersection guideline markings on the saturation flow rate are discussed. The results reveal that the improvement in the saturation flow rate obtained from painting guide line markings is positively correlated with the number of traffic lanes, offset of through movement, and turning angle of left-turns. On average, improvements of 7.0% and 10.3% can be obtained for through and left-turn movements, respectively.


Sign in / Sign up

Export Citation Format

Share Document