scholarly journals Clinical significance of miR-129-5p in patients with neonatal sepsis and its regulatory role in the LPS-induced inflammatory response

Author(s):  
Meng Li ◽  
Xiaoyang Huang ◽  
Qingcui Zhuo ◽  
Jinghui Zhang ◽  
Xiuli Ju

Neonatal sepsis (NS) occurs in neonates within 28 days, especially preterm infants. The dysregulation of miRNAs is widely detected in NS. The study investigated the expression changes and clinical significance of miR-129-5p in NS patients and further explored the regulatory role of miR-129-5p in the LPS-induced inflammatory response in monocytes. A total of 75 neonates with NS and 84 neonates without NS were recruited. qRT-PCR was used for the measurement of miR-129-5p expression. The receiver operating characteristic (ROC) curve was constructed for diagnostic value analysis. ELISA was used to detect the concentration of inflammatory cytokines. Monocytes were isolated from the blood of neonates to investigate the role of miR-129-5p in the LPS-induced inflammatory response in vitro. miR-129-5p was low expressed in the serum of NS cases compared with controls. Serum miR-129-5p had a diagnostic value for NS with a sensitivity of 82.7% and specificity of 79.8%. There was close association for serum miR-129-5p with TNF-α (r = -0.652, p < 0.001) and IL-8 (r = -0.700, p < 0.001) levels in NS patients. Overexpression of miR-129-5p reversed the increasing trend of TNF-α and IL-8 induced by LPS, whereas miR-129-5p downregulation aggravated the increase of TNF-α and IL-8 induced by LPS in monocytes. MiR-129-5p was downregulated in the serum of NS patients, and it might be a promising biomarker for disease diagnosis. Overexpression of miR-129-5p alleviated the inflammatory response of NS.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1652.1-1652
Author(s):  
A. Pandey ◽  
V. Ravindran ◽  
M. Pandey ◽  
R. Rajak ◽  
V. Pandey

Background:A close association between periodontal disease and Ankylosing spondylitis (AS) has long been specualted. Both diseases are characterized by dysregulation of the host inflammatory response, leading to further destruction of soft and hard connective tissue with there being evidence of increased levels of TNF-α and various interleukins in both patients of AS and periodontitis.Objectives:The aim of this systematic review was to appraise the available literature exploring the relationship between AS and periodontal disease.Methods:We searched Medline & Embase databases (from their inception till October 2019) using appropriate combinations of following search items with limits ‘(English, Human)’; Ankylosing spondylitis, spondyloarthritis, spondyloarthropathies, spondyloarthritides, spinal disease, musculoskeletal disease, Rheumatic disease AND periodontitis, periodontal disease, periodontoses, parodontoses, chronic periodontitis, gum disease, gingivitis, oral health, dental health, plaque index, bleeding on probing, probing pocket depth, clinical attachment loss. This search was supplemented by the manual search of bibliographies of articles selected and conferences proceedings of EULAR. Only be reviews, observational study of cross-sectional, cohort or case control type on adult patients with AS were selected. Data was extracted from a predesigned proforma. A close association between periodontal disease and Ankylosing spondylitis (AS) has long been specualted. Both diseases are characterized by dysregulation of the host inflammatory response, leading to further destruction of soft and hard connective tissue with there being evidence of increased levels of TNF-α and various interleukins in both patients of AS and periodontitis.Results:A total number of 984 articles were identified and 12 were selcted for detailed appraisal (Figure 1, PRISMA flow chart). They were all case control studies. The prevalence of periodontitis ranged from 38% to 88% in patients with AS whereas in the control group from 26% to 71 % in controls. Out of 12 studies, two showed significant changes in Plaque Index (PI), two studies showed altered Pocket Probing Depth (PPD), three showed significant increased in Clinical Attachment Loss (CAL) and increased Bleeding On Probing (BOP) was seen in 2 studies. In 7 studies, periodontitis was seen in a significant number of patients with AS (P<0.05). All studies reported that the prevalence of periodontal disease in AS patients was higher as compared to non-AS patients.Conclusion:Our systematic review found an association between AS and periodontal disease. Patients with AS show higher prevalence of periodontitis and a poor oral hygiene as compared to healthy controls. At practice level, this systematic review underscores the need for a collaboration between dentists and rheumatologist.Disclosure of Interests:None declared


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.


2021 ◽  
Author(s):  
Kim Chiok ◽  
Kevin Hutchison ◽  
Lindsay Grace Miller ◽  
Santanu Bose ◽  
Tanya A Miura

Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1) treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


1998 ◽  
Vol 274 (1) ◽  
pp. L26-L31 ◽  
Author(s):  
Paul J. Jagielo ◽  
Timothy J. Quinn ◽  
Nilofer Qureshi ◽  
David A. Schwartz

To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001–100 μg/ml), LPS (0.02 μg endotoxin activity/ml), or corn dust extract (CDE; 0.02 μg endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-α stimulatory effect at 100 μg/ml. In contrast, incubation with LPS or CDE resulted in TNF-α release at 0.02 μg/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 μg endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-α with concentrations of RsDPLA of up to 10 μg/ml but not at 100 μg/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 μg of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 μg/m3) or LPS (7.2 and 0.28 μg/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS-inhibitory effect of RsDPLA and support the role of endotoxin as the principal agent in grain dust causing airway inflammation.


2006 ◽  
Vol 117 (2) ◽  
pp. S147
Author(s):  
S.I. Wasserman ◽  
J. Ebmeyer ◽  
K. Pak ◽  
A. Ryan

2020 ◽  
Author(s):  
Wandang Wang ◽  
Xuran Yang ◽  
Mingfa Guo ◽  
Zhifeng Pan ◽  
Mingjin Qiu ◽  
...  

Abstract Background: Neonatal sepsis is an acute life-threatening condition in neonates, and a proper innate inflammatory is essential for prevention of the systemic inflammation associated with sepsis. As the most potential antigen-presenting innate immune cells, dentritic cells (DCs) dysfunction has been verified detrimental for sepsis. B and T lymphocyte attenuator (BTLA) is an immune-regulatory receptor shown to be associated with DCs dysfunction. However, the role of BTLA expression in myeloid DCs (mDCs) in neonatal sepsis is unknown. Methods: 61 of neonates with sepsis and 32 of neonates having no suspicion of sepsis as control were enrolled into this study. BTLA and HLA-DR expression in mDCs was measured by flow cytometry. To further study the role of BTLA in regulating mDCs function, BTLA+mDCs and BTLA-mDCs from septic neonates were sorted and utilized to evaluate the phagacytosis capacity, bactericidal ability as well as cytokine secretion of mDCs.Results: A higher percentage of BTLA+mDCs were observed in neonatal septic patients and the percentage was positively correlated to the duration of hospitalization of neonates as well as the severity of sepsis. Moreover, a decrease MFI expression of HLA-DR was found in mDCs in neonatal sepsis, which expression was negatively correlated with the percentage of BTLA+mDCs. When compared to BTLA-mDCs, sorted BTLA+mDCs exhibited lower FITC-dextran uptake capacity but more CFU E.coli number after cells challenged by E.coli. In addition, BTLA+mDCs comparatively secreted lower level of TNF-α and IL-12, but higher IL-10. Conclusions: A higher level of BTLA in mDCs in the observed septic neonates was associated to the severity of neonatal sepsis; therefore, BTLA expression in mDCs could be a useful biomarker help to determine the neonatal sepsis development. Additionally, BTLA negatively regulated the phagocytosis capacity and bactericidal ability of mDCs and lowered their antigen-presenting ability as well as altered cells into an anti-inflammatory phenotype. Thus, targeting BTLA in mDCs may be a new therapeutic strategy for neonatal sepsis.


Author(s):  
Deiziane V. S. Costa ◽  
Vivaldo Moura-Neto ◽  
David T. Bolick ◽  
Richard L. Guerrant ◽  
Jibraan A. Fawad ◽  
...  

The involvement of the enteric nervous system, which is a source of S100B, in Clostridioides difficile (C. difficile) infection (CDI) is poorly understood although intestinal motility dysfunctions are known to occur following infection. Here, we investigated the role of S100B in CDI and examined the S100B signaling pathways activated in C. difficile toxin A (TcdA)- and B (TcdB)-induced enteric glial cell (EGC) inflammatory response. The expression of S100B was measured in colon tissues and fecal samples of patients with and without CDI, as well as in colon tissues from C. difficile-infected mice. To investigate the role of S100B signaling in IL-6 expression induced by TcdA and TcdB, rat EGCs were used. Increased S100B was found in colonic biopsies from patients with CDI and colon tissues from C. difficile-infected mice. Patients with CDI-promoted diarrhea exhibited higher levels of fecal S100B compared to non-CDI cases. Inhibition of S100B by pentamidine reduced the synthesis of IL-1β, IL-18, IL-6, GMCSF, TNF-α, IL-17, IL-23, and IL-2 and downregulated a variety of NFκB-related genes, increased the transcription (SOCS2 and Bcl-2) of protective mediators, reduced neutrophil recruitment, and ameliorated intestinal damage and diarrhea severity in mice. In EGCs, TcdA and TcdB upregulated S100B-mediated IL-6 expression via activation of RAGE/PI3K/NFκB. Thus, CDI appears to upregulate colonic S100B signaling in EGCs, which in turn augment inflammatory response. Inhibition of S100B activity attenuates the intestinal injury and diarrhea caused by C. difficile toxins. Our findings provide new insight into the role of S100B in CDI pathogenesis and opens novel avenues for therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document