scholarly journals High Resolution Methods for Angle of Departure (AOD) and Angle of Arrival (AOA) Estimation in Bistatic Multiple-Input-Multiple-Output (MIMO) Radar Systems

2018 ◽  
Vol 11 (17) ◽  
pp. 1-7
Author(s):  
F. Harabi ◽  
A. Gharsallah ◽  
◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Michael F. Minner

The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on thel1-squared Nonnegative Regularization method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Pengcheng Gong ◽  
Zhenhai Shao

A beampattern synthesis approach is proposed to design the power spectral density matrix (PSDM), which is chosen to achieve a given transmit beampattern in wideband multiple-input multiple-output (MIMO) radar systems. The proposed approach focuses on transmit beampattern synthesis with constant beamwidth and sidelobe control. Moreover, the design problem is further converted to a convex optimization problem, which is solved efficiently via the modeling system CVX. In comparison to these recently developed wideband MIMO beampattern synthesis methods, the proposed approach maintains a constant beamwidth across the entire frequency band and provides a great improvement in sidelobe control. Numerical simulation results are obtained to validate the effectiveness of this approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jincan Ding ◽  
Haowen Chen ◽  
Hongqiang Wang ◽  
Xiang Li ◽  
Zhaowen Zhuang

This paper focuses on the target detection in low-grazing angle using a hybrid multiple-input multiple-output (MIMO) radar systems in compound-Gaussian clutter, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced in low-grazing angle; also, the generalized likelihood test (GLRT) and generalized likelihood ratio test-linear quadratic (GLRT-LQ) are derived with known covariance matrix. Via the numerical examples, it is shown that the derived GLRT-LQ detector outperforms the GLRT detector in low-grazing angle, and both performances can be enhanced markedly when the multipath effects are considered.


2012 ◽  
Vol 229-231 ◽  
pp. 1599-1604
Author(s):  
Jin Li Chen ◽  
Jia Qiang Li ◽  
Yan Ping Zhu

The distributed multiple-input multiple-output (MIMO) radar can achieve the high- resolution capabilities of target localization by coherent processing, far exceeding the bandwidth-dependent resolution of traditional radar. The conventional beam former synchronizing the phase across the widely separated transmitting and receiving antennas creates high level sidelobes that causes ambiguity in target localization. The Capon beam former with lower level sidelobes for target localization suffers from the irreversible of the covariance matrix when the numbers of transmitting and receiving antennas increase. Thus, the Capon algorithm with diagonal loading is applied to distributed MIMO radar for target localization with lower level sidelobes. Simulation results are presented to verify the effectiveness of the proposed method.


2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2453 ◽  
Author(s):  
Guangyong Zheng ◽  
Siqi Na ◽  
Tianyao Huang ◽  
Lulu Wang

Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer–Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods.


2019 ◽  
Vol 11 (9) ◽  
pp. 1029 ◽  
Author(s):  
Massimiliano Pieraccini ◽  
Lapo Miccinesi

Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. This article is a bibliographic review, as much complete as possible, of the scientific papers/articles published in the last 20 years, since the pioneering works in the nineties. Some statistics are reported here about the number of publications in the years, popularity of applications, operative modalities, operative bands. The aim of this review is also to identify directions and perspectives. In the opinion of authors, this type of radar systems will move forward faster modulations, wider view angle, MIMO (Multiple Input Multiple Output) systems and radar with capability to detect the vector of displacement and not only a single component.


Sign in / Sign up

Export Citation Format

Share Document