scholarly journals Comparison of two Motion Capture Systems by means of joint Trajectories of human gait

2016 ◽  
Vol 37 (2) ◽  
2011 ◽  
Vol 08 (02) ◽  
pp. 275-299 ◽  
Author(s):  
JUNG-YUP KIM ◽  
YOUNG-SEOG KIM

This paper, describes the development of a motion capture system with novel features for biped robots. In general, motion capture is effectively utilized in the field of computer animation. In the field of humanoid robotics, the number of studies attempting to design human-like gaits by using expensive optical motion capture systems is increasing. The optical motion capture systems used in these studies have involved a large number of cameras because such systems use small-sized ball markers; hence the position accuracy of the markers and the system calibration are very significant. However, since the human walking gait is a simple periodic motion rather than a complex motion, we have developed a specialized motion capture system for this study using dual video cameras and large band-type markers without high-level system calibration in order to capture the human walking gait. In addition to its lower complexity, the proposed capture method requires only a low-cost system and has high space efficiency. An image processing algorithm is also proposed for deriving the human gait data. Finally, we verify the reliability and accuracy of our system by comparing a zero moment point (ZMP) trajectory calculated by the motion captured data with a ZMP trajectory measured by foot force sensors.


2020 ◽  
Vol 44 (4) ◽  
pp. 245-262
Author(s):  
Alexandria Michelini ◽  
Arezoo Eshraghi ◽  
Jan Andrysek

Background: Motion capture systems are widely used to quantify human gait. Two-dimensional (2D) video systems are simple to use, easily accessible, and affordable. However, their performance as compared to other systems (i.e. three-dimensional (3D) gait analysis) is not well established. Objectives: This work provides a comprehensive review of design specifications and performance characteristics (validity and reliability) of two-dimensional motion capture systems. Study design: Systematic review. Methods: A systematic literature search was conducted in three databases from 1990 to 2019 and identified 30 research articles that met the inclusion/exclusion criteria. Results: Reliability of measurements of two-dimensional video motion capture was found to vary greatly from poor to excellent. Results relating to validity were also highly variable. Comparisons between the studies were challenging due to differences in protocols, instrumentation, parameters assessed, and analyses performed. Conclusions: Variability in performance could be attributed to study design, gait parameters being measured, and technical aspects. The latter includes camera specifications (i.e. resolution and frame rate), setup (i.e. camera position), and analysis software. Given the variability in performance, additional validation testing may be needed for specific applications involving clinical or research-based assessments, including specific patient populations, gait parameters, mobility tasks, and data collection protocols. Clinical relevance This review article provides guidance on the application of 2D video gait analysis in a clinical or research setting. While not suitable in all instances, 2D gait analysis has promise in specific applications. Recommendations are provided about the patient populations, gait parameters, mobility tasks, and data collection protocols.


2020 ◽  
Vol 98 ◽  
pp. 109429 ◽  
Author(s):  
Rubén Soussé ◽  
Jorge Verdú ◽  
Ricardo Jauregui ◽  
Ventura Ferrer-Roca ◽  
Simone Balocco

Author(s):  
Prashant Ganesh ◽  
Kyle Volle ◽  
Paul Buzaud ◽  
Kevin Brink ◽  
Andrew Willis

Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


2021 ◽  
Author(s):  
Jiaen Wu ◽  
Henrik Maurenbrecher ◽  
Alessandro Schaer ◽  
Barna Becsek ◽  
Chris Awai Easthope ◽  
...  

<div><div><div><p>Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems.To date, their reliability and limitations in manual labeling of gait events have not been studied.</p><p><b>Objectives</b>: Evaluate human manual labeling uncertainty and introduce a new hybrid gait analysis model for long-term monitoring.</p><p><b>Methods</b>: Evaluate and estimate inter-labeler inconsistencies by computing the limits-of-agreement; develop a model based on dynamic time warping and convolutional neural network to identify a valid stride and eliminate non-stride data in walking inertial data collected by a wearable device; Gait events are detected within a valid stride region afterwards; This method makes the subsequent data computation more efficient and robust.</p><p><b>Results</b>: The limits of inter-labeler agreement for key</p><p>gait events of heel off, toe off, heel strike, and flat foot are 72 ms, 16 ms, 22 ms, and 80 ms, respectively; The hybrid model's classification accuracy for a stride and a non-stride are 95.16% and 84.48%, respectively; The mean absolute error for detected heel off, toe off, heel strike, and flat foot are 24 ms, 5 ms, 9 ms, and 13 ms, respectively.</p><p><b>Conclusions</b>: The results show the inherent label uncertainty and the limits of human gait labeling of motion capture data; The proposed hybrid-model's performance is comparable to that of human labelers and it is a valid model to reliably detect strides in human gait data.</p><p><b>Significance</b>: This work establishes the foundation for fully automated human gait analysis systems with performances comparable to human-labelers.</p></div></div></div>


2020 ◽  
Vol 26 ◽  
pp. 00061
Author(s):  
Elina Makarova ◽  
Vladislav Dubatovkin ◽  
Nataliya Berezinskaya ◽  
Lyudmila Barkhatova ◽  
Elena Oleynik

The research is focused on studying the possibility of effective use of the dart grip system, the work of the athlete’s hand, to prepare the dartsman for competitions using the MOSAR complex. The experiment uses optical motion capture systems, a set of video cameras, led parameter sensors, and devices that allow to record the movement of body parts and a dart. This method of training and controlling dart throwing can serve as educational and visual material for training future athletes. The use of such motion capture systems in the near future may become one of the main aspects of training, both beginners and professionals, in many sports.


Author(s):  
Pyeong-Gook Jung ◽  
Sehoon Oh ◽  
Gukchan Lim ◽  
Kyoungchul Kong

Motion capture systems play an important role in health-care and sport-training systems. In particular, there exists a great demand on a mobile motion capture system that enables people to monitor their health condition and to practice sport postures anywhere at any time. The motion capture systems with infrared or vision cameras, however, require a special setting, which hinders their application to a mobile system. In this paper, a mobile three-dimensional motion capture system is developed based on inertial sensors and smart shoes. Sensor signals are measured and processed by a mobile computer; thus, the proposed system enables the analysis and diagnosis of postures during outdoor sports, as well as indoor activities. The measured signals are transformed into quaternion to avoid the Gimbal lock effect. In order to improve the precision of the proposed motion capture system in an open and outdoor space, a frequency-adaptive sensor fusion method and a kinematic model are utilized to construct the whole body motion in real-time. The reference point is continuously updated by smart shoes that measure the ground reaction forces.


Sign in / Sign up

Export Citation Format

Share Document