scholarly journals Imaging Mass Cytometry Compensation Slide Preparation v1 (protocols.io.bf2djqa6)

protocols.io ◽  
2020 ◽  
Author(s):  
Michelle Daniel ◽  
Marda Jorgensen
Author(s):  
SM Solberg ◽  
AK Aarebrot ◽  
I Sarkar ◽  
A Petrovic ◽  
LF Sandvik ◽  
...  

2019 ◽  
Vol 4 (42) ◽  
pp. eaax8189 ◽  
Author(s):  
Marie Jo Halaby ◽  
Kebria Hezaveh ◽  
Sara Lamorte ◽  
M. Teresa Ciudad ◽  
Andreas Kloetgen ◽  
...  

General control nonderepressible 2 (GCN2) is an environmental sensor controlling transcription and translation in response to nutrient availability. Although GCN2 is a putative therapeutic target for immuno-oncology, its role in shaping the immune response to tumors is poorly understood. Here, we used mass cytometry, transcriptomics, and transcription factor–binding analysis to determine the functional impact of GCN2 on the myeloid phenotype and immune responses in melanoma. We found that myeloid-lineage deletion of GCN2 drives a shift in the phenotype of tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs) that promotes antitumor immunity. Time-of-flight mass cytometry (CyTOF) and single-cell RNA sequencing showed that this was due to changes in the immune microenvironment with increased proinflammatory activation of macrophages and MDSCs and interferon-γ expression in intratumoral CD8+ T cells. Mechanistically, GCN2 altered myeloid function by promoting increased translation of the transcription factor CREB-2/ATF4, which was required for maturation and polarization of macrophages and MDSCs in both mice and humans, whereas targeting Atf4 by small interfering RNA knockdown reduced tumor growth. Last, analysis of patients with cutaneous melanoma showed that GCN2-dependent transcriptional signatures correlated with macrophage polarization, T cell infiltrates, and overall survival. Thus, these data reveal a previously unknown dependence of tumors on myeloid GCN2 signals for protection from immune attack.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chun Chen ◽  
David McDonald ◽  
Alasdair Blain ◽  
Ashwin Sachdeva ◽  
Laura Bone ◽  
...  

AbstractHere we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson’s disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson’s disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson’s disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson’s neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document