Faculty Opinions recommendation of Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry.

Author(s):  
Lutz Walter
2013 ◽  
Vol 5 (208) ◽  
pp. 208ra145-208ra145 ◽  
Author(s):  
A. Horowitz ◽  
D. M. Strauss-Albee ◽  
M. Leipold ◽  
J. Kubo ◽  
N. Nemat-Gorgani ◽  
...  

2022 ◽  
Author(s):  
Zizheng Shen ◽  
Hansen Zhao ◽  
Huan Yao ◽  
Xingyu Pan ◽  
Jinlei Yang ◽  
...  

Natural killer cell(NK cell)is an important immune cell which attracts increasing attention in cancer immunotherapy. Due to the heterogeneity of cells, individual cancer cell shows different resistance to NK cytotoxicity,...


2016 ◽  
Vol 1 (1) ◽  
pp. 165 ◽  
Author(s):  
Catherine A. Blish

Natural killer cells are a diverse group of innate lymphocytes that are specialized to rapidly respond to cancerous or virus-infected cells. NK cell function is controlled by the integration of signals from activating and inhibitory receptors expressed at the cell surface. Variegated expression patterns of these activating and inhibitory receptors at the single cell level leads to a highly diverse NK cell repertoire. Here I review the factors that influence NK cell repertoire diversity and its functional consequences for our ability to fight viruses.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3825-3825
Author(s):  
Jennifer A. Foltz ◽  
Melissa M. Berrien-Elliott ◽  
David A. Russler-Germain ◽  
Carly C. Neal ◽  
Jennifer Tran ◽  
...  

Abstract Natural killer (NK) cells are innate lymphoid cells that mediate anti-tumor responses and exhibit innate memory following stimulation with IL-12, IL-15, and IL-18, thereby differentiating into cytokine-induced memory-like (ML) NK cells. ML NK cells have well-described enhanced anti-tumor properties; however, the molecular mechanisms underlying their enhanced functionality are not well-understood. Initial reports of allogeneic donor ML NK cellular therapy for relapsed/refractory (rel/ref) acute myeloid leukemia (AML) demonstrated safety and a 47% CR/CRi rate (PMID32826231). In this setting, allogeneic ML NK cells are rejected after 3 weeks by recipient T cells, which precludes long-term evaluation of their biology. To address this limitation, we conducted a clinical trial for rel/ref AML patients that added adoptive transfer of same-donor ML NK cells on day +7 of a reduced-intensity conditioning (RIC) MHC-haploidentical HCT, followed by 4 doses of IL-15 (N-803) over 2 weeks (NCT02782546). Since the ML NK cells are from the HCT donor, they are not rejected, but remain MHC-haploidentical to the patient leukemia. Using samples from these patients, we profiled the single cell transcriptomes of NK cells using multidimensional CITE-seq, combining scRNAseq with a custom NK panel of antibodies. To identify donor ML NK cells in an unbiased fashion, we developed a CITE-seq ML NK classifier from in vitro differentiated paired conventional NK (cNK) and ML NK cells. This classifier was applied via transfer learning to CITE-seq analyzed samples from the donor (cNK cells) and patients at days +28 and +60. This approach identified 28-40% of NK cells as ML at Day +28 post-HCT. Only 1-6% of donor peripheral blood NK cells and 4-7% of NK cells in comparator leukemia patients at day +28 after conventional haplo-HCT alone were identified as ML NK cells (Fig 1A). These ML NK cells had a cell surface receptor profile analogous to a previously reported mass cytometry phenotype. Within the CITE-seq data, ML NK cells expressed a transcriptional profile consistent with enhanced functionality (GZMK, GZMA, GNLY), secreted proteins (LTB, CKLF), a distinct adhesome, and evidence of prior activation (MHC Class II and interferon-inducible genes). ML NK cells had a unique NK receptor repertoire including increased KIR2DL4, KLRC1(NKG2A), CD300A, NCAM1(CD56) , and CD2 with decreased expression of the inhibitory receptor KLRB1(CD161). Furthermore, ML NK cells upregulated HOPX, a transcription factor implicated in memory T cells and murine CMV adaptive NK cells. Additionally, ML NK cells downregulated transcription factors related to terminal maturation (ZEB2) and exhaustion (NR4A2). We next sought to identify changes during ML differentiation in patients post-HCT from day +28 to +60 post-HCT. Trajectory analysis identified a ML NK cell state distinct from cNK cells that was present at least 60 days post-HCT (Fig 1B). The ML transcriptional phenotype continued to modulate during late differentiation, including downregulation of GZMK and NCAM1, and upregulation of maturation related transcription factors, while maintaining high expression of HOPX. ML NK cells retained their enhanced functionality during in vivo differentiation, as patient ML NK cells had significantly increased IFNγ production compared to cNK cells after restimulation with leukemia targets or cytokines using mass cytometry (Fig. 2). Subsequently, we confirmed the ML CITE-seq profile in an independent clinical trial treating pediatric AML relapsed after allogenic HCT with same-donor ML NK cells (NCT03068819). In this setting, ML NK cells expressed a similar transcriptional signature and persisted for at least 2 months in the absence of exogenous cytokine support. Thus, ML NK cells possess a distinct transcriptional and surface proteomic profile and undergo in vivo differentiation while persisting within patients for at least 2 months. These findings reveal novel and unique aspects of the ML NK cell molecular program, as well as their prolonged functional persistence in vivo in patients, assisting in future clinical trial design. Figure 1 Figure 1. Disclosures Foltz: Kiadis: Patents & Royalties: TGFbeta expanded NK cells; EMD Millipore: Other: canine antibody licensing fees. Berrien-Elliott: Wugen: Consultancy, Patents & Royalties: 017001-PRO1, Research Funding. Bednarski: Horizon Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Fehniger: Wugen: Consultancy, Current equity holder in publicly-traded company, Patents & Royalties: related to memory like NK cells, Research Funding; ImmunityBio: Research Funding; Kiadis: Other; Affimed: Research Funding; Compass Therapeutics: Research Funding; HCW Biologics: Research Funding; OrcaBio: Other; Indapta: Other.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4588-4588
Author(s):  
Li Li ◽  
Muharrem Muftuoglu ◽  
Han Chen ◽  
Duncan Mak ◽  
Elif Gokdemir ◽  
...  

Abstract Natural killer (NK) cells are the first lymphocyte population to reconstitute following allogeneic hematopoietic stem cell transplantation (HSCT) and are key players in immune defense against viral infections and malignant transformation. NK cell numbers generally recover within the first month post-transplant, but the acquisition of mature NK cell phenotype and full functional competency can take over 6 months and is influenced by various host and donor factors. Cytomegalovirus (CMV) infection has been shown to modulate NK cell maturation after HSCT. The diversity of the NK cell repertoire is dictated by a variety of combinatorially expressed activating and inhibitory receptors that dictate the NK activation status. Moreover, whereas the expression of inhibitory receptors is primarily genetically determined, environmental factors such as viral infections influence the expression of activating receptors to a great extent.. We propose that assessment of diversity could provide a different perspective for the evaluation of the NK cell compartment after HSCT, since it is a quantitative measure that takes into account both the number and evenness of the different NK subpopulations. To better understand the factors that influence NK cell recovery after cord blood (CB) transplant (CBT) and specifically the influence of cytomegalovirus (CMV) infection on NK cell maturity, we used 40-parameter mass cytometry (CyTOF) to interrogate the NK cell repertoire. A panel including 37 monoclonal antibodies was designed to recognize NK cells lineage markers and receptors as well as intracellular markers such as transcription factors and adaptor proteins. We first evaluated and compared the diversity of NK cells in 10 CB units and peripheral blood (PB) from 20 healthy donors. We then examined the diversity of NK cells before and after CBT in 22 serially collected blood samples from in 10 CBT recipients. NK cell diversity was significantly lower in CB (mean 574, range 417-891) compared to PB samples from healthy donors (mean 3792, range 1284-5079; P=0.001), indicating less diversification within the naive CB NK compartment. After CBT, NK cell diversity was lower at earlier time point (Day30) (mean 1129, range 428-1768) compared to PB from healthy donors; P=0.01. The diversity of NK cells increased gradually over time following CBT (Day 30 mean 1129 range 428-1768; Day 60, mean 1185, range 515-1864; 4 months, mean 1711 range 597-2640). We also compared the diversity of NK cells in the PB of healthy CMV seronegative (n=10) and seropositive adult donors (n=10). The diversity of NK cells was higher in CMV seropositive vs. CMV seronegative healthy donors (3887 vs 2473; P=0.04). This difference in NK diversity was even more pronounced within the KIR positive (mean 1701, range, 981-2152) compared to the KIR negative subset (mean 551, range 456-647; P=0.02), indicating that CMV infection increases the richness of mature NK cells. In keeping with these findings, CMV infection after CBT was associated with a significantly greater diversity of NK cells, especially within the KIR positive compartment (mean 604, range 207-1035) compared to the KIR negative subset (mean 283, 257-457; P=0.025). However, in CMV negative patients, we found no difference in diversity within the KIR positive and negative subsets (mean 1120 vs. 1366; P=0.28). Taken together, these data suggest that NK cell diversity reflects NK cells differentiation and maturation, and that CMV shapes NK cell diversity, especially within the KIR positive compartment. To further understand how CMV influences NK cells diversity, we examined the top 15 NK cell subsets and their distribution at multiple timepoints before and after CMV reactivation post-CBT. CMV infection post-CBT was associated with a significant change in the distribution of NK subsets within the KIR positive population, with the top 15 subsets prior to CMV reactivation being mostly replaced by the emergence of new subsets. In contrast, the top 15 subsets within the KIR negative NK population remained stable. These data suggest that CMV drives NK cell maturation by differentiating KIR positive NK cells. In summary, we used high-dimensional single-cell data to evaluate NK cell reconstitution following HSCT. These data can help us better understand the biology of NK cell recovery after HSCT and discover the functional significance of NK cell diversity in the setting of viral infections. Disclosures Champlin: Ziopharm Oncology: Equity Ownership, Patents & Royalties; Intrexon: Equity Ownership, Patents & Royalties.


2008 ◽  
Vol 20 (6) ◽  
pp. 309-310 ◽  
Author(s):  
Andrew P. Makrigiannis ◽  
Peter Parham
Keyword(s):  
Nk Cell ◽  

2018 ◽  
Vol 453 ◽  
pp. 3-10 ◽  
Author(s):  
Bertram Bengsch ◽  
Takuya Ohtani ◽  
Ramin Sedaghat Herati ◽  
Niels Bovenschen ◽  
Kyong-Mi Chang ◽  
...  

2020 ◽  
Author(s):  
Julia L. McKechnie ◽  
Davis Beltrán ◽  
Anne-Maud M. Ferreira ◽  
Rosemary Vergara ◽  
Lisseth Saenz ◽  
...  

AbstractDengue virus (DENV) is a significant cause of morbidity in many regions of the world, with children at the greatest risk of developing severe dengue. Natural killer (NK) cells, characterized by their ability to rapidly recognize and kill virally infected cells, are activated during acute DENV infection. However, their role in viral clearance versus pathogenesis has not been fully elucidated. Our goal was to profile the NK cell receptor-ligand repertoire to provide further insight into the function of NK cells during pediatric and adult DENV infection. We used mass cytometry (CyTOF) to phenotype isolated NK cells and peripheral blood mononuclear cells (PBMCs) from a cohort of DENV-infected children and adults. Using unsupervised clustering, we found that pediatric DENV infection leads to a decrease in total NK cell frequency with a reduction in the percentage of CD56dimCD38bright NK cells and an increase in the percentage of CD56dimperforinbright NK cells. No such changes were observed in adults. Next, we identified markers predictive of DENV infection using a differential state test. In adults, NK cell expression of activation markers, including CD69, perforin, and Fas-L, and myeloid cell expression of activating NK cell ligands, namely Fas, were predictive of infection. In contrast, NK cell expression of the maturation marker CD57 and increased myeloid cell expression of inhibitory ligands, such as HLA class I molecules, were predictive of pediatric DENV infection. These findings suggest that acute pediatric DENV infection may result in diminished NK cell activation, which could contribute to enhanced pathogenesis and disease severity.


2019 ◽  
Author(s):  
Thanmayi Ranganath ◽  
Laura J. Simpson ◽  
Christof Seiler ◽  
Anne-Maud Ferreira ◽  
Elena Vendrame ◽  
...  

AbstractDaclizumab beta is a humanized monoclonal antibody that binds to CD25 and selectively inhibits high-affinity IL-2 receptor signaling. As a former treatment for relapsing forms of multiple sclerosis (RMS), daclizumab beta induces robust expansion of the CD56bright subpopulation of NK cells that is correlated with the drug’s therapeutic effects. As NK cells represent a heterogeneous population of lymphocytes with a range of phenotypes and functions, the goal of this study was to better understand how daclizumab beta altered the NK cell repertoire to provide further insight into the possible mechanism(s) of action in RMS. We used mass cytometry to evaluate expression patterns of NK cell markers and provide a comprehensive assessment of the NK cell repertoire in individuals with RMS treated with daclizumab beta or placebo over the course of one year. Treatment with daclizumab beta significantly altered the NK cell repertoire compared to placebo treatment. As previously reported, daclizumab beta significantly increased expression of CD56 on total NK cells. Within the CD56bright NK cells, treatment was associated with multiple phenotypic changes, including increased expression of NKG2A and NKp44, and diminished expression of CD244, CD57, and NKp46. While the changes were less dramatic, CD56dim NK cells responded distinctly to daclizumab beta treatment, with higher expression of CD2 and NKG2A, and lower expression of FAS-L, HLA-DR, NTB-A, NKp30, and Perforin. Together, these data indicate that the expanded NK cells share features of both immature and mature NK cells. These findings show that daclizumab beta treatment is associated with unique changes in NK cells that may enhance their ability to kill autoreactive T cells or to exert immunomodulatory functions.


Sign in / Sign up

Export Citation Format

Share Document