scholarly journals A Review on Phase Change Materials Incorporation in Asphalt Pavement

2018 ◽  
Vol 3 (2) ◽  
pp. 171
Author(s):  
Intan Kumalasari ◽  
Madzlan Napiah ◽  
Muslich H. Sutanto

Phase Change Material (later to be referred as PCM) has been successfully utilized in some areas. PCM has emerged as one of the materials for pavement temperature reducing due to its latent heat. Some research has been done regarding this topic. The objective of this paper is to review the development of PCM in asphalt pavement. The review has shown that organic PCM appears as the favourite PCM in asphalt concrete studies. Choice of porous material depends on method of incorporation. Reduction of temperature in PCM-asphalt mixture compared to conventional one is undoubtable. However, the mechanical performance of PCM-asphalt mixture need to be explored.

2011 ◽  
Vol 306-307 ◽  
pp. 1702-1706 ◽  
Author(s):  
Mei Zhu Chen ◽  
Guang Ji Xu ◽  
Shao Peng Wu ◽  
Wan Lu

The objective of this study is to investigate the preliminary feasibility on the utilization of shaped-stabled phase change materials (SSPCM) in asphalt concrete to control pavement high-temperature. A comparative study has been conducted on the properties of asphalt with and without SSPCM. The properties investigated include basic and rheological performance along with temperature-controlling effect of asphalt mortars. The results show that there exist stiffening and “temperature lag” effect for asphalt mortar containing SSPCM, which indicates that it may be promising to use SSPCM to reduce high-temperature of asphalt pavement.


2011 ◽  
Vol 219-220 ◽  
pp. 1375-1378 ◽  
Author(s):  
Mei Zhu Chen ◽  
Jing Hong ◽  
Shao Peng Wu ◽  
Wan Lu ◽  
Guang Ji Xu

Rutting is a common and serious phenomenon in asphalt pavement especially in high temperature areas. Phase change material (PCM) can adjust temperature through storing and releasing thermal energy during phase change process and has been used in thermal energy storage areas and building materials. However, the use of PCM to regulate the temperature of asphalt pavement has not been widely studied. In this paper, the feasibility of temperature self-control asphalt pavement using PCM was studied for preventing rutting. The temperature-control mechanism of asphalt pavement with PCM has been presented. The selection criteria of PCM used in asphalt pavement have been made. Meanwhile, a paraffin/expanded graphite shape-stabled phase change material with a phase change temperature range of 40°C~50°C has been used in this study. The temperature rising test of asphalt concrete showed that sample with PCM exhibited a lower temperature than the control sample, which indicates that it is feasible to use PCM in asphalt pavement for lowering temperature and preventing rutting.


2014 ◽  
Vol 599 ◽  
pp. 355-360 ◽  
Author(s):  
Bin Bin Leng ◽  
Mei Zhu Chen ◽  
Shao Ping Zheng ◽  
Shao Peng Wu

With the global warming, phase change materials are being expected to be applied in asphalt pavement to help lower its surface temperature. In this study, a kind of composite phase change material was prepared and its technique parameters were optimized through theoretical analysis and experimental study. A solid-liquid phase change material, with melt point of 43°C and phase transition heat of 161.6J/g, was used as core. The organophilic montmorillonite (OMMT) was used as a carrier and can prevent leakage of the melted phase change materials. The results showed that the ratio of OMMT to lauric acid was 2.6:1, and the melting temperature and time were 74°Cand 1.5hours, respectively. The composite phase change material prepared in this study had the phase transition latent heat of 36.168J/g and the transition temperature of 40.094°C. And the experimental results are in good agreement with theoretical analysis.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


2020 ◽  
Vol 170 ◽  
pp. 01007
Author(s):  
Marwa El Yassi ◽  
Ikram El Abbassi ◽  
Alexandre Pierre ◽  
Yannick Melinge

Nowadays, buildings sector contributes to climate change by consuming a considerable amount of energy to afford thermal comfort for occupants. Passive cooling techniques are a promising solution to increase the thermal inertia of building envelopes, and reduce temperature fluctuations. The phase change materials, known as PCM, can be efficiently employed to this purpose, because of their high energy storage density. Among the various existing solutions, the present study is dedicated to solid-liquid phase change materials. Temperature evolution (according to their defined temperature range) induces the chemical change of the material and its state. For building applications, the chemical transition can be accomplished from liquid to solid (solidification) and from solid to liquid (melting). In fact, this paper presents a comparative thermal analysis of several test rooms with and without phase change materials embedded in a composite wallboard in different climates. The used PCM consist in a flexible sheet of 5 mm thickness (Energain, manufactured by the company DuPont de Nemours). The main properties of such a commercial solution have been delivered by the manufacturer and from analyses. The room model was validated using laboratory instrumentations and measurements of a test room in four cities: Lyon; Reading and Casablanca. Results indicate that this phase change material board can absorb heat gains and also reduce the indoor air temperature fluctuations during daytime. The aim of the study is to show the benefits of this layer with phase change material and compare it in different climatic zones.


2018 ◽  
Vol 70 ◽  
pp. 01010
Author(s):  
Marta Kuta ◽  
Dominika Matuszewska ◽  
Tadeusz Michał Wójcik

Increasing energy consumption in residential and public buildings requires development of new technologies for thermal energy production and storage. One of possibilities for the second listed need is the use of phase change materials (PCMs). This work is focused on solutions in this area and consists of two parts. First one is focused on different designs of thermal energy storage (TES) tanks based on the phase change materials. The second part is the analysis of tests results for TES tank containing shelf and tube heat exchanger and filled with phase change material. Thermal energy storage tank is analyzed in order to use it in domestic heating and hot utility water installations. The aim of this research was to check the applicability of phase change material for mentioned purpose. Results show that using phase change materials for thermal energy storage can increase amount of stored heat. The use of properly selected PCM and heat exchanger enables the process of thermal energy storing and releasing to become more efficient.


Sign in / Sign up

Export Citation Format

Share Document