scholarly journals Simulation of Spontaneous Activity in Neuronal Cultures with Long-Term Plasticity

Author(s):  
А.А. Дегтерев ◽  
A.A. Degterev

Existence of spontaneous population bursts is a widely studied phenomenon observed in neuronal cultures in vitro. Recent models of neuronal cultures network activity consist of a number of burst generating mechanisms such as synaptic noise and presence of pacemaker neurons in the network. In the previous simulations of bursting in neuronal cultures synaptic weights change in accordance with the rule of short-term plasticity whereas the long-term values of them, and hence the network structure, remain unchanged. In this paper we reproduce neuronal network models with static synapses, and then investigate spontaneous activity changes in neuronal networks with long-term plasticity defined by STDP rule. Our results demonstrate that introduction of long-term plasticity in the model leads to discrepancy with the experimental data.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Cabrera-Garcia ◽  
Davide Warm ◽  
Pablo de la Fuente ◽  
M. Teresa Fernández-Sánchez ◽  
Antonello Novelli ◽  
...  

AbstractSynchronization and bursting activity are intrinsic electrophysiological properties of in vivo and in vitro neural networks. During early development, cortical cultures exhibit a wide repertoire of synchronous bursting dynamics whose characterization may help to understand the parameters governing the transition from immature to mature networks. Here we used machine learning techniques to characterize and predict the developing spontaneous activity in mouse cortical neurons on microelectrode arrays (MEAs) during the first three weeks in vitro. Network activity at three stages of early development was defined by 18 electrophysiological features of spikes, bursts, synchrony, and connectivity. The variability of neuronal network activity during early development was investigated by applying k-means and self-organizing map (SOM) clustering analysis to features of bursts and synchrony. These electrophysiological features were predicted at the third week in vitro with high accuracy from those at earlier times using three machine learning models: Multivariate Adaptive Regression Splines, Support Vector Machines, and Random Forest. Our results indicate that initial patterns of electrical activity during the first week in vitro may already predetermine the final development of the neuronal network activity. The methodological approach used here may be applied to explore the biological mechanisms underlying the complex dynamics of spontaneous activity in developing neuronal cultures.


2007 ◽  
Vol 97 (4) ◽  
pp. 2937-2948 ◽  
Author(s):  
Ofer Feinerman ◽  
Menahem Segal ◽  
Elisha Moses

Spontaneous activity is typical of in vitro neural networks, often in the form of large population bursts. The origins of this activity are attributed to intrinsically bursting neurons and to noisy backgrounds as well as to recurrent network connections. Spontaneous activity is often observed to emanate from localized sources or initiation zones, propagating from there to excite large populations of neurons. In this study, we use unidimensional cultures to overcome experimental difficulties in identifying initiation zones in vivo and in dissociated two-dimensional cultures. We found that spontaneous activity in these cultures is initiated exclusively in localized zones that are characterized by high neuronal density but also by recurrent and inhibitory network connections. We demonstrate that initiation zones compete in driving network activity in a winner-takes-most scenario.


2011 ◽  
Vol 109 (1) ◽  
pp. 166-175 ◽  
Author(s):  
Emilia Biffi ◽  
Andrea Menegon ◽  
Francesco Piraino ◽  
Alessandra Pedrocchi ◽  
Gianfranco B. Fiore ◽  
...  

2019 ◽  
Author(s):  
Paloma P Maldonado ◽  
Alvaro Nuno-Perez ◽  
Jan Kirchner ◽  
Elizabeth Hammock ◽  
Julijana Gjorgjieva ◽  
...  

SummarySpontaneous network activity shapes emerging neuronal circuits during early brain development, however how neuromodulation influences this activity is not fully understood. Here, we report that the neuromodulator oxytocin powerfully shapes spontaneous activity patterns. In vivo, oxytocin strongly decreased the frequency and pairwise correlations of spontaneous activity events in visual cortex (V1), but not in somatosensory cortex (S1). This differential effect was a consequence of oxytocin only increasing inhibition in V1 and increasing both inhibition and excitation in S1. The increase in inhibition was mediated by the depolarization and increase in excitability of somatostatin+ (SST) interneurons specifically. Accordingly, silencing SST+ neurons pharmacogenetically fully blocked oxytocin’s effect on inhibition in vitro as well its effect on spontaneous activity patterns in vivo. Thus, oxytocin decreases the excitatory/inhibitory ratio and modulates specific features of V1 spontaneous activity patterns that are crucial for refining developing synaptic connections and sensory processing later in life.


2021 ◽  
Vol 15 ◽  
Author(s):  
Antonela Petrović ◽  
Jelena Ban ◽  
Ivana Tomljanović ◽  
Marta Pongrac ◽  
Matea Ivaničić ◽  
...  

Primary dissociated neuronal cultures have become a standard model for studying central nervous system (CNS) development. Such cultures are predominantly prepared from the hippocampus or cortex of rodents (mice and rats), while other mammals are less used. Here, we describe the establishment and extensive characterization of the primary dissociated neuronal cultures derived from the cortex of the gray South American short-tailed opossums, Monodelphis domestica. Opossums are unique in their ability to fully regenerate their CNS after an injury during their early postnatal development. Thus, we used cortex of postnatal day (P) 3–5 opossum to establish long-surviving and nearly pure neuronal cultures, as well as mixed cultures composed of radial glia cells (RGCs) in which their neurogenic and gliogenic potential was confirmed. Both types of cultures can survive for more than 1 month in vitro. We also prepared neuronal cultures from the P16–18 opossum cortex, which were composed of astrocytes and microglia, in addition to neurons. The long-surviving opossum primary dissociated neuronal cultures represent a novel mammalian in vitro platform particularly useful to study CNS development and regeneration.


Author(s):  
José Mateus ◽  
Cátia Lopes ◽  
Miguel Aroso ◽  
Ana Costa ◽  
Ana Geros ◽  
...  

Abstract Objective: Recent technological advances are revealing the complex physiology of the axon and challenging long-standing assumptions. Namely, while most action potential (AP) initiation occurs at the axon initial segment in central nervous system neurons, initiation in distal parts of the axon has been reported to occur in both physiological and pathological conditions. The functional role of these ectopic APs, if exists, is still not clear, nor its impact on network activity dynamics. Approach: Using an electrophysiology platform specifically designed for assessing axonal conduction we show here for the first time regular and effective bidirectional axonal conduction in hippocampal and dorsal root ganglia cultures. We investigate and characterize this bidirectional propagation both in physiological conditions and after distal axotomy. Main results: A significant fraction of APs are not coming from the canonical synapse-dendrite-soma signal flow, but instead from signals originating at the distal axon. Importantly, antidromic APs may carry information and can have a functional impact on the neuron, as they consistently depolarize the soma. Thus, plasticity or gene transduction mechanisms triggered by soma depolarization can also be affected by these antidromic APs. Conduction velocity is asymmetrical, with antidromic conduction being slower than orthodromic. Significance: Altogether these findings have important implications for the study of neuronal function in vitro, reshaping our understanding on how information flows in neuronal cultures.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e1 ◽  
Author(s):  
Diletta Pozzi ◽  
Nicolò Meneghetti ◽  
Anjan Roy ◽  
Beatrice Pastore ◽  
Alberto Mazzoni ◽  
...  

BACKGROUND: The spontaneous activity of neuronal networks has been studied in in vitro models such as brain slices and dissociated cultures. However, a comparison between their dynamical properties in these two types of biological samples is still missing and it would clarify the role of architecture in shaping networks’ operation. METHODS: We used calcium imaging to identify clusters of neurons co-activated in hippocampal and cortical slices, as well as in dissociated neuronal cultures, from GAD67-GFP mice. We used statistical tests, power law fitting and neural modelling to characterize the spontaneous events observed. RESULTS:  In slices, we observed intermittency between silent periods, the appearance of Confined Optical Transients (COTs) and of Diffused Optical Transients (DOTs). DOTs in the cortex were preferentially triggered by the activity of neurons located in layer III-IV, poorly coincident with GABAergic neurons. DOTs had a duration of 10.2±0.3 and 8.2±0.4 seconds in cortical and hippocampal slices, respectively, and were blocked by tetrodotoxin, indicating their neuronal origin. The amplitude and duration of DOTs were controlled by NMDA and GABA-A receptors. In dissociated cultures, we observed an increased synchrony in GABAergic neurons and the presence of global synchronous events similar to DOTs, but with a duration shorter than that seen in the native tissues. CONCLUSION: We conclude that DOTs are shaped by the network architecture and by the balance between inhibition and excitation, and that they can be reproduced by network models with a minimal number of parameters.


2019 ◽  
Author(s):  
Simon A. Sharples ◽  
Nicole E. Burma ◽  
Joanna Borowska-Fielding ◽  
Charlie H.T. Kwok ◽  
Shane E.A. Eaton ◽  
...  

AbstractDopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors however; how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.Significance statementMonoaminergic neuromodulation of neural networks is dependent not only on target receptors but also on network state. We studied the concentration-dependent control of spinal networks of the neonatal mouse, in vitro, during a low excitability state characterized by spontaneous network activity. Spontaneous activity is an essential element for the development of networks. Under these conditions, we defined converging receptor and cellular mechanisms that contribute to the diverse, concentration-dependent control of spinal motor networks by dopamine, in vitro. These experiments advance understanding of how monoamines modulate neuronal networks under dynamically changing excitability conditions and provide evidence of dedicated D1 and D2 regulated network components in the spinal cord that are consistent with those reported in the striatum.


2013 ◽  
Vol 109 (7) ◽  
pp. 1824-1836 ◽  
Author(s):  
Anubhuti Goel ◽  
Dean V. Buonomano

Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in response to chronic changes in activity. Studies have typically manipulated network activity pharmacologically; we used chronic electrical stimulation to increase activity in in vitro cortical circuits in a more physiological manner. Slices were stimulated with “implanted” electrodes for 4 days. Chronic electrical stimulation or treatment with bicuculline decreased spontaneous activity as predicted by homeostatic learning rules. Paradoxically, however, whereas bicuculline decreased evoked network activity, chronic stimulation actually increased the likelihood that evoked stimulation elicited polysynaptic activity, despite a decrease in evoked monosynaptic strength. Furthermore, there was an inverse correlation between spontaneous and evoked activity, suggesting a homeostatic tradeoff between spontaneous and evoked activity. Within-slice experiments revealed that cells close to the stimulated electrode exhibited more evoked polysynaptic activity and less spontaneous activity than cells close to a control electrode. Collectively, our results establish that chronic stimulation changes the dynamic regimes of networks. In vitro studies of homeostatic plasticity typically lack any external input, and thus neurons must rely on “spontaneous” activity to reach homeostatic “set points.” However, in the presence of external input we propose that homeostatic learning rules seem to shift networks from spontaneous to evoked regimes.


Sign in / Sign up

Export Citation Format

Share Document