scholarly journals Effect of magnetic field, flow rate and particle concentration on capture efficiency of magnetic nanoparticles transported in a fluidic channel

2015 ◽  
Vol 1 (4) ◽  
pp. 90-93
Author(s):  
Anurag Gaur ◽  
2015 ◽  
Vol 10 ◽  
pp. 64-69 ◽  
Author(s):  
Shashi Sharma ◽  
Anurag Gaur ◽  
Uaday Singh ◽  
V.K. Katiyar

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2390-2396
Author(s):  
Yoon Ji Seo ◽  
Hyung Gyu Lee ◽  
Jun Seok Yang ◽  
Hwanyeop Jeong ◽  
Jeonghun Han ◽  
...  

Magnetic microrods were synthesised from magnetic nanoparticles by alignment using a magnetic field. The transparency difference was maximised and the anisotropic features of the rods were used as a light valve to control the transparency of a smart window.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1157
Author(s):  
Elena K. Schneider-Futschik ◽  
Felisa Reyes-Ortega

Nanomaterials provide enormous opportunities to overcome the limitations of conventional ocular delivery systems, such as low therapeutic efficacy, side effects due to the systemic exposure, or invasive surgery. Apart from the more common ocular disorders, there are some genetic diseases, such as cystic fibrosis, that develop ocular disorders as secondary effects as long as the disease progresses. These patients are more difficult to be pharmacologically treated using conventional drug routes (topically, systemic), since specific pharmacological formulations can be incompatible, display increased toxicity, or their therapeutic efficacy decreases with the administration of different kind of chemical molecules. Magnetic nanoparticles can be used as potent drug carriers and magnetic hyperthermia agents due to their response to an external magnetic field. Drugs can be concentrated in the target point, limiting the damage to other tissues. The other advantage of these magnetic nanoparticles is that they can act as magnetic resonance imaging agents, allowing the detection of the exact location of the disease. However, there are some drawbacks related to their use in drug delivery, such as the limitation to maintain efficacy in the target organ once the magnetic field is removed from outside. Another disadvantage is the difficulty in maintaining the therapeutic action in three dimensions inside the human body. This review summarizes all the application possibilities related to magnetic nanoparticles in ocular diseases.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1870
Author(s):  
Dmitry Borin ◽  
Robert Müller ◽  
Stefan Odenbach

This paper presents the results of an experimental study of the influence of an external magnetic field on the shear flow behaviour of a magnetic fluid based on barium hexaferrite nanoplates. With the use of rheometry, the magnetoviscosity and field-dependent yield-stress in the fluid are evaluated. The observed fluid behaviour is compared to that of ferrofluids with magnetic nanoparticles having high dipole interaction. The results obtained supplement the so-far poorly studied topic of the influence of magnetic nanoparticles’ shape on magnetoviscous effects. It is concluded that the parameter determining the observed magnetoviscous effects in the fluid under study is the ratio V2/l3, where V is the volume of the nanoparticle and l is the size of the nanoparticle in the direction corresponding to its orientation in the externally applied magnetic field.


2010 ◽  
Vol 129-131 ◽  
pp. 692-696
Author(s):  
Jian Bing Meng ◽  
Xiao Juan Dong ◽  
Chang Ning Ma

A mathematical model was developed to describe the oscillating amplitude of the plasma arc injected transverse to an external transverse alternating magnetic field. The characteristic of plasma arc under the external transverse alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation of plasma arc were also analyzed. The results show that it is feasible to adjust the shape of the plasma arc by the transverse alternating magnetic field, which expands the region of plasma arc thermal treatment upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flow rate, more arc current, and less standoff cause the oscillating amplitude to decrease. The researches have provided a deeper understanding of adjusting of plasma arc characteristics.


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 9004-9012 ◽  
Author(s):  
Jinghua Li ◽  
Yan Hu ◽  
Yanhua Hou ◽  
Xinkun Shen ◽  
Gaoqiang Xu ◽  
...  

An alternating magnetic field triggered nanocarrier for drug delivery is fabricated for dual modal imaging-guided thermo-chemo cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document