scholarly journals Biochemical and Histological Effects of Low Dose of Monosodium Glutamate on the Liver of Adult Male Sprague-Dawley Rats

2019 ◽  
Vol 17 (02) ◽  
pp. 107-112
Author(s):  
SITI FATHIAH MASRE ◽  
NUR ATHIRAH RAZALI ◽  
NUR NAIMAH NANI ◽  
IZATUS SHIMA TAIB
2008 ◽  
Vol 180 ◽  
pp. S39-S40
Author(s):  
Robert Roos ◽  
Patrik Andersson ◽  
Päivi Heikkinen ◽  
Hans-Joachim Schmitz ◽  
Leo van der Ven ◽  
...  

2010 ◽  
Vol 103 (3) ◽  
pp. 1337-1349 ◽  
Author(s):  
Vijay Lyall ◽  
Tam-Hao T. Phan ◽  
ZuoJun Ren ◽  
Shobha Mummalaneni ◽  
Pamela Melone ◽  
...  

Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP2) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 × 10−6 M; a specific ENaC blocker) and resiniferatoxin (RTX; 0–10 × 10−6 M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 × 10−6 and 1 × 10−6 M. At concentrations >1 × 10−6 M, RTX inhibited the CT response. An increase in PIP2 by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP2 (a short chain synthetic PIP2) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP2 by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 × 10−6 M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP2. An increase in PIP2 enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na+response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 × 10−6 M) or in TRPV1 KO mice. We conclude that PIP2 is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP2 seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t.


2018 ◽  
Vol 52 (6) ◽  
Author(s):  
Maria Concepcion C. Sison ◽  
Lynn Crisanta R. Panganiban ◽  
Daisy Mae A. Bagaoisan ◽  
Nelia P. Cortes-Maramba

Objective. To To evaluate potential effects of the aqueous extract of Quassia amara L. leaves on the cardiovascular and respiratory systems of adult male Sprague- Dawley rats. Methods. The cardiovascular and respiratory effects of the Quassia amara L. leaf extract on adult male SpragueDawley rats were assessed using non-invasive blood pressure (NIBP) determination and head-out plethysmography, respectively, in a randomized, parallel group study. Mean observations of blood pressure and heart rate were recorded at different time periods after dosing. Respiratory flow and irritation effects were evaluated using mean observations of respiratory rate (RR), tidal volume (TV), mid-expiratory flow rate (EF50), time of inspiration (TI) and expiration (TE), and time of break (TB) and pause (TP). Results. There were no significant differences among the control and the treatment groups in SBP, DBP and HR parameters. The extract showed statistically significant effect on mean RR by time period (F=2.45, p=0.0234), trends over time of TV among the dose groups (F=2.00, p=0.0202), and EF50 among dose groups ((F=3.11, p=0.0422). However, these did not correlate with the changes in the time of break (TB) and time of pause (TP) which are more sensitive and specific tests for respiratory irritation. Conclusion. Aqueous leaf extract of Quassia appeared to have no significant effects on SBP, DPB, Pulse pressure, and HR. There are no conclusive dose-related respiratory flow or pulmonary irritation effects.


2013 ◽  
Vol 68 (1) ◽  
pp. e9
Author(s):  
Jonathan Toot ◽  
Michelle Hackman ◽  
Timothy Pringle ◽  
Melissa Beck ◽  
Philip Atterson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document