scholarly journals Analysis of Biogas Production from Biomass Residue of Palm Oil Mills using an Anaerobic Batch Test

2021 ◽  
Vol 50 (12) ◽  
pp. 3583-3592
Author(s):  
Norashikin Ahmad Kamal ◽  
Siti Nooraihanah Osman ◽  
Dong Yeol Lee ◽  
Marfiah Ab Wahid

The Malaysian palm oil industry has grown rapidly due to Malaysia’s tropical weather and suitable terrain. Palm oil production is now categorized as the most significant agriculture-based industry in the country. Along with strong economic returns, the palm oil industry also generates an abundance of waste products, including empty fruit bunches (EFB) (23%), mesocarp fibre (12%), shells (5%) and palm oil mill effluent (POME) (60%) for every batch of fresh fruit bunches (FFB) processed in the mills. This study is meant to fill the gap from previous studies in terms of biogas productions from the POME or the combination of POME and EFB which normally been conducted under the thermophilic conditions. The appropriate mixture ratios between POME and EFB in anaerobic digestion will reduce time of treatment and space if been conducted in the low temperature (mesophilic conditions). Thus, this paper is focuses on the analysis of batch test design which consist of low temperature (mesophilic, 20-40 °C) conditions for evaluating the performance of biogas production from the combination of POME and EFB in anaerobic digestion. The aim was to determine the amount of biogas production based on different ratios of POME and EFB mixtures. Biogas 1, containing 160 mL of fresh POME mixed with 40 g of EFB, was shredded and blended with 1800 mL seed sludge. Biogas 2, containing 120 mL of fresh POME mixed with 80 g of EFB, was shredded and blended with 1800 mL seed sludge. Based on the analysis of the results, the total production of Biogas 1 was greater than that of Biogas 2. The findings also show that the ratio of POME and 20% EFB (Biogas 1) was more efficient in producing the biogas compared to the ratio POME and 40% EFB (Biogas 2) under the mesophilic conditions. Thus, the mesophilic conditions required energy saving and low-cost process, compared to the previous studies which used the high temperature (thermophilic, 41-122 °C) that definitely was costly and require more energy consumption. This study will serve as preliminary results for enhancing the treatment methods use in Malaysia and form the early basis for the development of a new technology incorporating a combination of POME and EFB.

2014 ◽  
Vol 955-959 ◽  
pp. 2692-2696 ◽  
Author(s):  
Li Fan Liu ◽  
Yong Wei Liao ◽  
Jie Liang ◽  
Shu Ting Lai

The characteristics such as pH, dry matter, carbon concentration, the total solid and volatile solid of kitchen wastes produced by a canteen in Guangzhou were measured. The anaerobic digestion process performances were evaluated through the examination of operational conditions like activated sludge inoculation, temperature on SS, biogas production, COD concentration and pH in the reactor. When the proportion between kitchen wastes to seed sludge inoculation was 1:1, the biogas production reached the peak at 45 °C. The kitchen waste pH decreased at the first four days then increased adversely after 4 days digestion, but COD concentration showed the opposite variation.


Author(s):  
G. Hurst ◽  
M. Peeters ◽  
S. Tedesco

AbstractThe drive towards a low carbon economy will lead to an increase in new lignocellulosic biorefinery activities. Integration of biorefinery waste products into established bioenergy technologies could lead to synergies for increased bioenergy production. In this study, we show that solid residue from the acid hydrolysis production of levulinic acid, has hydrochar properties and can be utilised as an Anaerobic Digestion (AD) supplement. The addition of 6 g/L solid residue to the AD of ammonia inhibited chicken manure improved methane yields by +14.1%. The co-digestion of biorefinery waste solids and manures could be a promising solution for improving biogas production from animal manures, sustainable waste management method and possible form of carbon sequestration.


2014 ◽  
Vol 69 ◽  
pp. 219-225 ◽  
Author(s):  
Marek Markowski ◽  
Ireneusz Białobrzewski ◽  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Mirosław Krzemieniewski

2020 ◽  
Vol 10 (7) ◽  
pp. 2412
Author(s):  
Slawomir Kasinski

The objective of this study was to investigate the effect of process temperature on semi-continuous anaerobic digestion of the organic fraction separated during autoclaving of municipal waste. Tests were carried out in reactors with full mixing. Biogas production was higher in thermophilic conditions than in mesophilic conditions (0.92 L/g volatile solids at 55 °C vs. 0.42 L/g volatile solids at 37 °C, respectively). The resulting methane yields were 0.25-0.32 L CH4/g VS and 0.56–0.70 L CH4/g VS in mesophilic and thermophilic conditions, respectively. In both variants, the methane share was over 70% v/v. This work also discusses the potential impact of Maillard compounds on the efficiency of the fermentation process, which were probably produced during the process of autoclaving of municipal waste. These results indicate that, after autoclaving, the organic fraction of municipal waste can be an effective substrate for anaerobic digestion in thermophilic conditions.


2019 ◽  
Vol 35 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Ricardo Galbiatti Sandoval Nogueira ◽  
Teng Teeh Lim ◽  
Haoqi Wang ◽  
Paulo Henrique Mazza Rodrigues

Abstract. Co-digestion trials of beef cattle manure and waste kitchen oil (WKO) were conducted to evaluate potential increase of biogas production for a local beef farm anaerobic digester. The trials were conducted using laboratory-scale, semi-continuously loaded digesters under mesophilic conditions, with 21-day hydraulic retention time (HRT). In a preliminary test, WKO was added at 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume, each with replicate digesters (n=2), except for the 0% level, which had one digester (n=1). Methane (CH4) yield per week increased linearly with WKO levels. Populations of bacteriodetes decreased, while clostridiales and synergistales increased with the WKO levels. A second test was conducted using treatments with more replication: control (n=3), and 1.0% (n=3) and 2% (n=3) WKO levels. Methane yields of the 1.0% and 2.0% WKO levels were 79.1% and 203% higher than the control, respectively. Addition of WKO have resulted in changes of the metagenomics of the digesters. Populations of clostridiales increased, while bacteroidales and euryarchaeota methanomicrobia YC-E6 decreased with the WKO levels. The findings confirm adding low amounts (1% and 2%) of WKO as co-digestion feedstock can be an effective way to increase CH4 yield for beef operation anaerobic digestion, especially when there are available feedstock nearby. Keywords: Anaerobic digestion, Biogas, Methane, Semi-continuous digesters.


2013 ◽  
Vol 141 ◽  
pp. 174-176 ◽  
Author(s):  
Mohammed Saidu ◽  
Ali Yuzir ◽  
Mohd Razman Salim ◽  
Salmiati ◽  
Shamila Azman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document